Molecular Biology Reports

, Volume 38, Issue 8, pp 5055–5063 | Cite as

Proteomic response of barley leaves to salinity

  • Abdolrahman Rasoulnia
  • Mohammad Reza Bihamta
  • Seyed Ali Peyghambari
  • Houshang Alizadeh
  • Afrasyab Rahnama


Drought and salinity stresses are adverse environmental factors that affect crop growth and yield. Proteomic analysis offers a new approach to identify a broad spectrum of genes that are expressed in living system. We applied this technique to investigate protein changes that were induced by salinity in barley genotypes (Hordeum vulgare L.), Afzal, as a salt-tolerant genotype and L-527, as a salt-sensitive genotype. The seeds of two genotypes were sown in pot under controlled condition of greenhouse, using a factorial experiment based on a randomized complete block design with three replications. Salt stress was imposed at seedling stage and leaves were collected from control and salt-stressed plant. The Na+ and K+ concentrations in leaves changed significantly in response to short-term stress. About 850 spots were reproducibly detected and analyzed on 2-DE gels. Of these, 117 proteins showed significant change under salinity condition in at least one of the genotypes. Mass spectrometry analysis using MALDI-TOF/TOF led to the identification some proteins involved in several salt responsive mechanisms which may increase plant adaptation to salt stress including higher constitutive expression level and upregulation of antioxidant, upregulation of protein involved in signal transduction, protein biosynthesis, ATP generation and photosynthesis. These findings may enhance our understanding of plant molecular response to salinity.


Barley 2-D electrophoresis Proteomics Salinity 



We are grateful to Professor Claire Gay, York university of UK, facility for performing the MS analysis and associated bioinformatics.


  1. 1.
    Wiebe BH, Eilers RG, Eilers WD, Brierly JA (2007) Application of a risk indicator for assessing trends in dry land salinization risk on the Canadian Prairies. Can J Soil Sci 87(2):213–224CrossRefGoogle Scholar
  2. 2.
    Zhu Jk (2001) Plant salt tolerance. Trends Plant Sci 6(2):66–71. doi: 10.1016/S1360-1385(00)01838-0 PubMedCrossRefGoogle Scholar
  3. 3.
    Munns RA (2005) Gene and salt tolerance: bringing them together. New Phytol 167(3):645–663. doi: 10.1111/j.1469-8137.2005.01487.x PubMedCrossRefGoogle Scholar
  4. 4.
    Jaradat AA, shahid M, Al Maskari AY (2004) Genetic diversity in the batini barley landrace from Oman. Crop Sci 44(3):304–315CrossRefGoogle Scholar
  5. 5.
    Zeng L, Shannon MC (2000) Salinity effect on seedling growth and yield component of rice. Crop Sci 40(4):996–1003CrossRefGoogle Scholar
  6. 6.
    Alonso SI, Guma IR, Clausen AM (1999) Variability for salt tolerance during germination in Lolium multiflorum Lam natural in the Pampean grassland. Genet Res Crop Evol 46(1):87–94. doi: 10.1023/A:1008638325484 CrossRefGoogle Scholar
  7. 7.
    Foolad MR, Chen FQ, Lin GY (1998) RFLP mapping of QTLs conferring salt tolerance during germination in an interspecific cross of tomato. Theor Appl Genet 97(7):1133–1144. doi: 10.1007/s001220051002 CrossRefGoogle Scholar
  8. 8.
    Patterson J, Ford K, Cassin A, Natera S, Basic A (2007) Increased abundant of proteins involved in phytosiderophore production in Boron-tolerant barley. Plant Physiol 144:1612–1631. doi: 10.1104/pp.107.096388 PubMedCrossRefGoogle Scholar
  9. 9.
    Salekdeh GhH, Siopongco J, Wade LJ, Ghareyazie B, Bennett J (2002) A proteomics approach to analyzing drought- and salt-responsiveness in rice. Field Crop Res 76(2–3):199–219CrossRefGoogle Scholar
  10. 10.
    Chapman HD, Pratt PF (1961) Methods of analysis for soils, plants and waters. Div Agric Sci Univ Calif Berkeley, CaliforniaGoogle Scholar
  11. 11.
    Damerval C, de Vienne D, Zivy M, Thiellement H (1986) Technical improvements in two-dimensional electrophoresis increase the level of genetic variation detected in wheat seedlings proteins. Electrophoresis 7(1):52–54. doi: 10.1002/elps.115007010 CrossRefGoogle Scholar
  12. 12.
    Blum H, Beier H, Gross HJ (1987) Improved silver staining of plant proteins, RNA and DNA in polyacrylamide gels. Electrophoresis 8(2):93–99. doi: 10.1002/elps.1150080203 CrossRefGoogle Scholar
  13. 13.
    Shevchenko A, Wilm M, Vorm O, Mann M (1996) Mass spectrometric sequencing of proteins silver-stained polyacrylamide gels. Anal Chem 68(5):850–858. doi: 10.1021/ac950914h PubMedCrossRefGoogle Scholar
  14. 14.
    Gobom J, Schuerenberg M, Mueller M, Theiss D (2001) Alpha-cyano-4-hydroxycinnamic acid affinity sample preparation—a protocol for MALDI-MS peptide analysis in proteomics. Anal Chem 73(3):434–438. doi: 10.1021/ac001241s PubMedCrossRefGoogle Scholar
  15. 15.
    Munns R, Rawson HM (1999) Effect of salinity on salt accumulation and reproductive development in the apical meristem of wheat and barley. Aust J Plant Physiol 26(5):459–464. doi: 10.1071/PP99049 CrossRefGoogle Scholar
  16. 16.
    Munns R (2002) Comparative physiology of salt and water stress. Plant Cell Environ 25(2):239–250. doi: 10.1046/j.0016-8025.2001.00808.x PubMedCrossRefGoogle Scholar
  17. 17.
    Garcia-sanchez F, Jifon JL, Carvajal M, Syvertsen JP (2002) Gas exchange, chlorophyll and nutrient contents in relation to Na+ and Cl accumulation in ‘Sunburst’ mandarin grafted on different rootstocks. Plant Sci 162:705–712CrossRefGoogle Scholar
  18. 18.
    Schachtman DP, Liu WH (1999) Molecular pieces to the puzzle of interaction between potassium and sodium uptake in plants. Trends Plant Sci 4(7):281–287PubMedCrossRefGoogle Scholar
  19. 19.
    Avron M, Gibbs M (1974) Properties of phosphoribulokinase of whole chloroplasts. Plant Physiol 53(2):136–139. doi: 10.1104/pp.53.2.136 PubMedCrossRefGoogle Scholar
  20. 20.
    Graciet E, Lereton S, Gontero B (2004) Emergence of new regulatory mechanisms in the Benson–Calvin pathway via protein- protein interactions: a glyceraldehyde-3-phosphatedehydrogenase/CP12/phosphoribulokinase complex. J Exp Bot 55(400):1245–1254. doi: 10.1093/jxb/erh107 PubMedCrossRefGoogle Scholar
  21. 21.
    Christine AR, Julie CL, Nicola MW, Susan P, Tristan AD (1992) cDNA and gene sequences of wheat chloroplast sedoheptulose-1,7-bisphosphatase reveal homology with fructose-l,6-bisphosphatases. Eur J Biochem 205(3):1053–1059. doi: 10.1111/j.1432-1033.1992.tb16873.x CrossRefGoogle Scholar
  22. 22.
    Fischer N, Hippler M (1998) The PsaC subunit of photosystem I provides an essential lysine residue for fast electron transfer to ferredoxin. EMBO J 17(4):849–858. doi: 10.1093/emboj/17.4.849 PubMedCrossRefGoogle Scholar
  23. 23.
    Schutze K, Steiner S, Pfannschmidt T (2008) Photosynthetic redox regulation of the plastocyanin promoter in tobacco. Physiol Plantarum 133(3):557–565. doi: 10.1111/j.1399-3054.2008.01118.x CrossRefGoogle Scholar
  24. 24.
    Nielsen PS, Causing K (1993) In vitro binding of nuclear proteins to the barley plastocyanin gene promoter region. Eur J Biochem 217(1):97–104. doi: 10.1111/j.1432-1033.1993.tb18223.x PubMedCrossRefGoogle Scholar
  25. 25.
    Chaves MM, Flaxe J, Pinheiro C (2009) Photosynthesis under drought and salt stress: regulation mechanisms from whole plant to cell. Ann Bot 103(4):551–560. doi: 10.1093/aob/mcn125 PubMedCrossRefGoogle Scholar
  26. 26.
    Sugihara K, Hanagata N, Dubinsky Z, Baba S, Karube I (2000) Molecular characterization of cDNA encoding oxygen evolving enhancer protein 1 increased by salt treatment in the mangrove Bruguiera gymnorrhiza. Plant Cell Physiol 41(11):1279–1285. doi: 10.1093/pcp/pcd061 PubMedCrossRefGoogle Scholar
  27. 27.
    Murota KI, Ohshita Y, Watanabe A, Aso S, Sato F, Yamada Y (1994) Changes related to salt tolerance in thylakoid membranes of photoautotrophically cultured green tobacco cells. Plant Cell Physiol 35(1):107–113Google Scholar
  28. 28.
    Peskan-Berghöfer T, Neuwirth J, Kusnetsov V, Oelmüller R (2005) Suppression of heterotrimeric G-protein β-subunit affects anther shape, pollen development and inflorescence architecture in tobacco. Planta 220(5):737–746. doi: 10.1007/s00425-004-1393-4 PubMedCrossRefGoogle Scholar
  29. 29.
    Bolwell GP, Wojtaszek P (1999) Role of active oxygen species and NO in plant defense responses. Curr Opin Plant Biol 2(4):287–294PubMedCrossRefGoogle Scholar
  30. 30.
    Mehlhorn H, Lelandais M, Korth HG, Foyer CH (1996) Ascorbate is the natural substrate for plant peroxidases. FEBS Lett 378(3):203–206. doi: 10.1016/0014-5793(95)01448-9 PubMedCrossRefGoogle Scholar
  31. 31.
    Schurmann P, Jacquot JP (2000) Plant thioredoxin systems revisited. Annu Rev Plant Physiol Plant Mol Biol 51:371–400. doi: 10.1146/annurev.arplant.51.1.371 PubMedCrossRefGoogle Scholar
  32. 32.
    Yano H, Kuroda S, Buchanan BB (2002) Disulfide proteome in the analysis of protein function and structure. Proteomics 2(9):1090–1096. doi: 10.1002/1615-9861(200209)2:9<1090:AID-PROT1090>3.0.CO;2-1 PubMedCrossRefGoogle Scholar
  33. 33.
    Hajheydari M, Eivazi A, Buchman BB, Wong JH, Majidi I, Salekdeh GH (2007) Proteomics uncovers a role for redox in drought tolerance in wheat. J Proteome Res 6(4):1451–1460. doi: 10.1021/pr060570j CrossRefGoogle Scholar
  34. 34.
    Rajguru SN, Banks SW, Gossett DR, Lucas MC, Millhollon EP (1999) Antioxidant response to salt stress during fiber development in cotton ovules. J Cotton Sci 3:11–18Google Scholar
  35. 35.
    Salekdeh GH, Siopongco J, Wada LJ, Ghareyazi B, Bennett JP (2000) Proteomic analysis of rice during drought stress and recovery. Proteomics 2:1131–1145CrossRefGoogle Scholar
  36. 36.
    Wang J, Zhang H, Allen RD (1999) Overexpression of an Arabidopsis peroxisomal ascorbate peroxidase gene in tobacco increases protection against oxidative stress. Plant Cell Physiol 40(7):725–732PubMedGoogle Scholar
  37. 37.
    Dadashi Dooki A, Mayer-Posner FJ, Askari H, Ziaee AA, Salekdeh GH (2006) Proteomic response of rice young panicles to salinity. Proteomics 6(24):6498–6507. doi: 10.1002/pmic.200600367 CrossRefGoogle Scholar
  38. 38.
    Dietz KJ, Jacob S, Oelze ML, Laxa M, Tognetti V, Mariana S, Miranda ND, Barier M, Finkemeier I (2006) The function of peroxiredoxins in plant organelle redox metabolism. J Exp Bot 57(8):1697–1709. doi: 10.1093/jxb/erj160 PubMedCrossRefGoogle Scholar
  39. 39.
    Hall A, Karplus AP, Poole BL (2009) Typical 2-Cys peroxiredoxins—structures, mechanisms and functions. FEBS J 276(9):2469–2477. doi: 10.1111/j.1742-4658.2009.06985.x PubMedCrossRefGoogle Scholar
  40. 40.
    Kitajima S (2008) Hydrogen peroxide-mediated inactivation of two chloroplastic peroxidases, ascorbate peroxidase and 2-Cys peroxiredoxin. Photochem Photobiol 84(6):1404–1409. doi: 10.1111/j.1751-1097.2008.00452.x PubMedCrossRefGoogle Scholar
  41. 41.
    Abbasi FM, Komatsu S (2004) A proteomic approach to analyze salt-responsive proteins in rice leaf sheath. Proteomics 4(7):2072–2081. doi: 10.1002/pmic.200300741 PubMedCrossRefGoogle Scholar
  42. 42.
    Tada Y, Kashimura T (2009) Proteomic analysis of salt-responsive proteins in the mangrove plant, Bruguiera gymnorhiza. Plant Cell Physiol 50(3):439–446. doi: 10.1093/pcp/pcp002 PubMedCrossRefGoogle Scholar
  43. 43.
    Yang X, Liang Z, Wen X, Lu C (2008) Genetic engineering of the biosynthesis of glycinebetaine leads to increased tolerance of photosynthesis to salt stress in transgenic tobacco plants. Plant Mol Biol 66(1–2):73–86. doi: 10.1007/s11103-007-9253-9 PubMedCrossRefGoogle Scholar
  44. 44.
    Elmlund H, Lundqvist J, Al-Karadaghi S, Hansson M, Hebert H, Lindahl M (2008) A new cryo-EM single-particle ab initio reconstruction method visualizes secondary structure elements in an ATP-fueled AAA+ motor. J Mol Biol 375(4):934–947. doi: 10.1016/j.jmb.2007.11.028 PubMedCrossRefGoogle Scholar
  45. 45.
    Von Wettstein D, Henningsen KW, Boynton C, Kannangara G, Nielsen OF (1971) The genetic control of chloroplast development in barley. North-Holland Publishing Company, AmsterdamGoogle Scholar
  46. 46.
    Gadjieva R, Axelson E, Olsson U (2005) Analysis of gun phenotype in barley magnesium chelatase and Mg-protoporphyrin IX monomethyl ester cyclase mutants. Plant Physiol Biochem 43(10–11):901–908. doi: 10.1016/j.plaphy.2005.08.003 PubMedCrossRefGoogle Scholar
  47. 47.
    Haas FH, Heeg C, Queiroz R, Bauer A, Witz M, Hell R (2008) Mitochondrial serine acetyl transferase functions as a pacemaker of cysteine synthesis in plant cells. Plant Physiol 148(2):1055–1067. doi: 10.1104/pp.108.125237 PubMedCrossRefGoogle Scholar
  48. 48.
    Wan XY, Liu JY (2008) Comparative proteomics analysis reveals an intimate protein network provoked by hydrogen peroxide stress in rice seedling leaves. Mol Cell Proteomics 7(8):1469–1488. doi: 10.1074/mcp.M700488-MCP200 PubMedCrossRefGoogle Scholar
  49. 49.
    May MJ, Vernoux T, Leaver C, Van Montagu M, Inze D (1998) Glutathione homeostasis in plants: implications for environmental sensing and plant development. J Exp Bot 49(321):649–667CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2010

Authors and Affiliations

  • Abdolrahman Rasoulnia
    • 1
  • Mohammad Reza Bihamta
    • 1
  • Seyed Ali Peyghambari
    • 1
  • Houshang Alizadeh
    • 1
  • Afrasyab Rahnama
    • 2
  1. 1.Department of Agronomy and Plant Breeding, Faculty of Agriculture and Natural SciencesUniversity of TehranKarajIran
  2. 2.Department of Agronomy and Plant Breeding, College of AgricultureShahid Chamran UniversityAhvazIran

Personalised recommendations