Advertisement

Molecular Biology Reports

, Volume 38, Issue 7, pp 4545–4551 | Cite as

Development of polymorphic microsatellite markers in barfin flounder (Verasper moseri) and spotted halibut (Verasper variegatus) by the cross-species amplification

  • Hongyu Ma
  • Songlin ChenEmail author
Article

Abstract

Barfin flounder (Verasper moseri) and spotted halibut (Verasper variegatus) are two commercially important flatfish species in the Northeast Asia. In the present study, we reported polymorphic microsatellite markers in V. moseri and V. variegatus by the cross-species amplification of microsatellite primers developed previously in two other related marine fish species. A total of 244 polymorphic microsatellite markers were selected for cross-species amplification in V. moseri and V. variegatus, of which 182 markers deriving from Atlantic halibut (Hippoglossus hippoglossus) and 62 markers deriving from Japanese flounder (Paralichthys olivaceus). A sample of 10 individuals were detected. As a result, a total of 67 loci showed polymorphisms in V. moseri, and 62 loci showed polymorphisms in V. variegatus, with the observed number of alleles per locus ranging from two to five in V. moseri, and from two to seven in V. variegatus, respectively. This paper provided more candidate microsatellite markers which could be useful for construction of genetic linkage maps, evaluation of population genetic structure and stock management of V. moseri and V. variegatus.

Keywords

Verasper moseri Verasper variegatus Microsatellite markers Cross-species amplification 

Notes

Acknowledgments

This work was supported by grants from State High-Technology R&D Project of China (863) (2006AA10A403), Taishan Scholar Project of Shandong Province, China.

References

  1. 1.
    Weber JL, May PE (1989) Abundant class of human DNA polymorphisms which can be typed using the polymerase chain-reaction. Am J Hum Genet 44:388–396PubMedGoogle Scholar
  2. 2.
    O’Reilly P, Wright JM (1995) The evolving technology DNA fingerprinting and its application to fisheries and aquaculture. J Fish Biol 47(suppl A):29–55CrossRefGoogle Scholar
  3. 3.
    Pettay DT, Lajeunesse TC (2009) Microsatellite loci for assessing genetic diversity, dispersal and clonality of coral symbionts in ‘stress-tolerant’ clade D Symbiodinium. Mol Ecol Resour 9:1022–1025PubMedCrossRefGoogle Scholar
  4. 4.
    Abdul Muneer PM, Gopalakrishnan A, Musammilu KK, Mohindra V, Lal KK, Basheer VS, Lakra WS (2009) Genetic variation and population structure of endemic yellow catfish, Horabagrus brachysoma (Bagridae) among three populations of Western Ghat region using RAPD and microsatellite markers. Mol Biol Rep 36:1779–1791PubMedCrossRefGoogle Scholar
  5. 5.
    Khedkar GD, Chandra Shekar Reddy A, Mann P, Ravinder K, Muzumdar K (2010) Clarias batrachus (Linn. 1758) population is lacking genetic diversity in India. Mol Biol Rep 37:1355–1362PubMedCrossRefGoogle Scholar
  6. 6.
    Abdul Muneer PM, Gopalakrishnan A, Shivandan R, Basheer VS, Ponniah AG (2010) Genetic variation and phylogenetic relationship between two species of yellow catfish, Horabagrus brachysoma and H. nigricollaris (Teleostei: Horabagridae) based on RAPD and microsatellite markers. Mol Biol Rep. doi: 10.1007/s11033-010-0352-3 PubMedGoogle Scholar
  7. 7.
    Guyomard R, Mauger S, Tabet-Canale K, Martineau S, Genet C, Krieg F, Quillet E (2006) A type I and type II microsatellite linkage map of rainbow trout (Oncorhynchus mykiss) with presumptive coverage of all chromosome arms. BMC Genomics 7:302–314PubMedCrossRefGoogle Scholar
  8. 8.
    McDonald GJ, Danzmann RG, Ferguson MM (2004) Relatedness determination in the absence of pedigree information in three cultured strains of rainbow trout (Oncorhynchus mykiss). Aquaculture 233:65–78CrossRefGoogle Scholar
  9. 9.
    Aritaki M, Suzuki S, Watanabe K (2000) Morphological development and growth of laboratory-reared barfin flounder Verasper moseri. Nippon Suisan Gakk 67:58–66Google Scholar
  10. 10.
    Aritaki M, Ohta K, Hotta Y, Tanaka M (2001) Morphological development and growth of laboratory-reared spotted halibut Verasper variegatus. Nippon Suisan Gakk 67:58–66Google Scholar
  11. 11.
    Ortega-Villaizan Romo M, Nakajima M, Taniguchi N (2003) Isolation and characterization of microsatellite DNA markers in the rare species barfin flounder (Verasper moseri) and its closely related species spotted halibut (V. variegatus). Mol Ecol Notes 3:629–631CrossRefGoogle Scholar
  12. 12.
    Lahrech Z, Kishioka C, Morishima K, Mori T, Saito S, Arai K (2007) Genetic verification of induced gynogenesis and microsatellite-centromere mapping in the barfin flounder, Verasper moseri. Aquaculture 272(S1):S115–S124CrossRefGoogle Scholar
  13. 13.
    Sekino M, Saitoh K, Aritaki M (2008) Microsatellite markers for a rare species of right-eye flounder Verasper variegatus (Pleuronectiformes, Pleuronectidae). Conserv Genet 9:761–765CrossRefGoogle Scholar
  14. 14.
    Miao GD, Shao CW, Liao XL, Ma HY, Tian YS, Chen SL (2009) Development of polymorphic microsatellite markers from barfin flounder (Verasper moseri) and their cross-species amplification. Conserv Genet 10:701–703CrossRefGoogle Scholar
  15. 15.
    Ortega-Villaizan Romo M, Aritaki M, Suzuki S, Ikeda M, Asahida T, Taniguchi N (2006) Genetic population evaluation of two closely related flatfish species, the rare barfin flounder and spotted halibut, along the Japanese coast. Fish Sci 72:556–567CrossRefGoogle Scholar
  16. 16.
    Ma HY, Yang JF, Su PZ, Chen SL (2009) Genetic analysis of gynogenetic and common populations of Verasper moseri using SSR markers. Wuhan Univ J Nat Sci 14:267–273CrossRefGoogle Scholar
  17. 17.
    Ortega-Villaizan Romo M, Aritaki M, Taniguchi N (2006) Pedigree analysis of recaptured fish in the stock enhancement program of spotted halibut Verasper variegatus. Fish Sci 72:48–52CrossRefGoogle Scholar
  18. 18.
    Ortega-Villaizan Romo M, Suzuki S, Nakajima M, Taniguchi N (2006) Genetic evaluation of interindividual relatedness for broodstock management of the rare species barfin flounder Verasper moseri using microsatellite DNA markers. Fish Sci 72:33–39CrossRefGoogle Scholar
  19. 19.
    McGowan C, Reith ME (1999) Polymorphic microsatellite markers for Atlantic halibut, Hippoglossus hippoglossus. Mol Ecol 8:1761–1763PubMedCrossRefGoogle Scholar
  20. 20.
    Coughlan J, Stefansson M, Galvin P, Dillane E, Fitzgerald R, Cross TF (2000) Isolation and characterization of 11 microsatellite loci in Atlantic halibut (Hippoglossus hippoglossus L.). Mol Ecol 9:822–824PubMedCrossRefGoogle Scholar
  21. 21.
    Reid DP, Pongsomboon S, Jackson T, McGowan C, Murphy C, Martin-Robichaud D, Reith M (2005) Microsatellite analysis indicates an absence of population structure among Hippoglossus hippoglossus in the north-west Atlantic. J Fish Biol 67:570–576CrossRefGoogle Scholar
  22. 22.
    Douglas SE, Knickle LC, Kimball J, Reith ME (2007) Comprehensive EST analysis of Atlantic halibut (Hippoglossus hippoglossus), a commercially relevant aquaculture species. BMC Genomics 8:144–154PubMedCrossRefGoogle Scholar
  23. 23.
    Reid DP, Smith CA, Rommens M, Blanchard B, Martin-Robichaud D, Reith M (2007) A genetic linkage map of Atlantic halibut (Hippoglossus hippoglossus L.). Genetics 177:1193–1205PubMedCrossRefGoogle Scholar
  24. 24.
    Zane L, Bargelloni L, Patarnello T (2002) Strategies for microsatellite isolation: a review. Mol Ecol 11:1–16PubMedCrossRefGoogle Scholar
  25. 25.
    Lian C, Hogetsu T (2002) Development of microsatellite markers in black locust (Robinia pseudoacacia) using dual-suppression-PCR technique. Mol Ecol Notes 2:211–213Google Scholar
  26. 26.
    Sudheer PDVN, Rahman H, Mastan SG, Reddy MP (2010) Isolation of novel microsatellites using FIASCO by dual probe enrichment from Jatropha curcas L. and study on genetic equilibrium and diversity of Indian population revealed by isolated microsatellites. Mol Biol Rep 37:3785–3793PubMedCrossRefGoogle Scholar
  27. 27.
    Pickles RSA, Groombridge JJ, Rojas VDZ, Jordan WC (2009) Cross-species characterization of polymorphic microsatellite loci in the giant otter (Pteronura brasiliensis). Mol Ecol Res 9:415–417CrossRefGoogle Scholar
  28. 28.
    Feres JM, Martinez MLL, Martinez CA, Mestriner MA, Alzate-Marin AL (2009) Transferability and characterization of nine microsatellite markers for the tropical tree species Tabebuia roseo-alba. Mol Ecol Res 9:434–437CrossRefGoogle Scholar
  29. 29.
    Sudheer PDVN, Mastan SG, Rahman H, Prakash CR, Singh S, Reddy MP (2010) Cross species amplification ability of novel microsatellites isolated from Jatropha curcas and genetic relationship with sister taxa. Mol Biol Rep. doi: 10.1007/s11033-010-0241-9 Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2010

Authors and Affiliations

  1. 1.Key Lab for Sustainable Utilization of Marine Fisheries ResourcesMinistry of Agriculture, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery SciencesQingdaoChina
  2. 2.Key Laboratory of Marine and Estuarine Fisheries Resources and EcologyMinistry of Agriculture, East China Sea Fisheries Research Institute, Chinese Academy of Fishery SciencesShanghaiChina

Personalised recommendations