Molecular Biology Reports

, Volume 38, Issue 6, pp 4231–4235

PTPN22 1858C>T (R620W) functional polymorphism and human longevity

  • Valerio Napolioni
  • Annalia Natali
  • Patrizia Saccucci
  • Nazzareno Lucarini


The PTPN22 gene, located on chromosome 1p13, encoding lymphoid protein tyrosine phosphatase (LYP), plays a crucial role in the negative control of T lymphocyte activation. Since the age-related change in T-cell signal transduction may be one of the most important causes of cell-mediated immune response decline with ageing, we performed a population-based association study to test whether the PTPN22 1858C>T (R620W) functional polymorphism affects the ability to survive to old age and to reach even exceptional life expectancy. 892 unrelated healthy individuals (age range 8–106 years, 403 males and 489 females) from central Italy were studied. For both gender, the frequency of PTPN22*T1858 carriers does not differ significantly in nona/centenarians and in octogenarians respect to young group. Allele and genotype frequencies of age groups were compared to those reported in previously published studied carried out on control individuals with Italic ancestry (N = 1393), further confirming results obtained from our sample population. Overall, our study suggests that PTPN22*T1858 allele is not negatively selected at oldest ages and we speculate that its increased ability to protect individuals against development of infectious diseases may counteract its deleterious effect on immune system leading to autoimmunity.


Association study Genetic polymorphism Human longevity Italic population Autoimmunity 


  1. 1.
    Grubeck-Loebenstein B, Wick G (2002) The ageing of the immune system. Adv Immunol 80:243–284PubMedCrossRefGoogle Scholar
  2. 2.
    Makinodan T, Kay MM (1980) Age influence on the immune system. Adv Immunol 29:287–330PubMedCrossRefGoogle Scholar
  3. 3.
    Ben-Yehuda A, Weksler ME (1992) Host resistance and the immune system. Clin Geriatr Med 8:701–711PubMedGoogle Scholar
  4. 4.
    Ershler WB (1993) The influence of an ageing immune system on cancer incidence and progression. J Gerontol 48:B3–B7PubMedGoogle Scholar
  5. 5.
    Fulop T Jr, Larbi A, Dupuis G, Pawelec G (2003) Ageing, autoimmunity and arthritis: Perturbations of TCR signal transduction pathways with ageing—a biochemical paradigm for the ageing immune system. Arthritis Res Ther 5:290–302PubMedCrossRefGoogle Scholar
  6. 6.
    Liparoto SF, Myszka DG, Wu Z, Goldstein B, Laue TM, Ciardelli TL (2002) Analysis of the role of the interleukin-2 receptor gamma chain in ligand binding. Biochemistry 41:2543–2551PubMedCrossRefGoogle Scholar
  7. 7.
    Hombach A, Sent D, Schneider C, Heuser C, Koch D, Pohl C et al (2001) T- cell activation by recombinant receptors: CD28 costimulation is required for interleukin 2 secretion and receptor-mediated T-cell proliferation but does not affect receptor-mediated target cell lysis. Cancer Res 61:1976–1982PubMedGoogle Scholar
  8. 8.
    Nagel JE, Chopra RK, Dowers DC, Adler WH (1989) Effect of age on the human high affinity interleukin 2 receptor of phytohaemagglutinin stimulated peripheral blood lymphocytes. Clin Exp Immunol 75:286–291PubMedGoogle Scholar
  9. 9.
    Fulop T Jr, Gagné D, Goulet AC, Desgeroges S, Lacombe G, Arcand M et al (1999) Age-related impairment of p56lck and ZAP70 activities in human T lymphocytes activated through the TCR/CD3 complex. Exp Gerontol 34:197–216PubMedCrossRefGoogle Scholar
  10. 10.
    Miller RA (2000) Effect of ageing on T lymphocyte activation. Vaccine 18:1654–1660PubMedCrossRefGoogle Scholar
  11. 11.
    Pawelec G, Hirokawa K, Fulop T (2001) Altered T cell signalling in ageing. Mech Ageing Dev 122:1613–1637PubMedCrossRefGoogle Scholar
  12. 12.
    Cloutier JF, Veillette A (1999) Cooperative inhibition of T-cell antigen receptor signaling by a complex between a kinase and a phosphatase. J Exp Med 189:111–121PubMedCrossRefGoogle Scholar
  13. 13.
    Palacios EH, Weiss A (2004) Function of the Src-family kinases, Lck and Fyn in T-cell development and activation. Oncogene 23:7990–8000PubMedCrossRefGoogle Scholar
  14. 14.
    Bottini N, Musumeci L, Alonso A, Rahmouni S, Nika K, Rostamkhani M et al (2004) A functional variant of lymphoid tyrosine phosphatase is associated with type I diabetes. Nat Genet 36:337–338PubMedCrossRefGoogle Scholar
  15. 15.
    Ladner MB, Bottini N, Valdes AM, Noble JA (2005) Association of the single nucleotide polymorphism C1858T of the PTPN22 gene with type 1 diabetes. Hum Immunol 66:60–64PubMedCrossRefGoogle Scholar
  16. 16.
    Onengut-Gumuscu S, Ewens KG, Spielman RS, Concannon P (2004) A functional polymorphism (1858C/T) in the PTPN22 gene is linked and associated with type I diabetes in multiplex families. Genes Immun 5:678–680PubMedCrossRefGoogle Scholar
  17. 17.
    Begovich AB, Carlton VE, Honigberg LA, Schrodi SJ, Chokkalingam AP, Alexander HC et al (2004) A missense single-nucleotide polymorphism in a gene encoding a protein tyrosine phosphatase (PTPN22) is associated with rheumatoid arthritis. Am J Hum Genet 75:330–337PubMedCrossRefGoogle Scholar
  18. 18.
    Chung SA, Criswell LA (2007) PTPN22: its role in SLE and autoimmunity. Autoimmunity 40:582–590PubMedCrossRefGoogle Scholar
  19. 19.
    Vang T, Miletic AV, Bottini N, Mustelin T (2007) Protein tyrosine phosphatase PTPN22 in human autoimmunity. Autoimmunity 40:453–461PubMedCrossRefGoogle Scholar
  20. 20.
    Rieck M, Arechiga A, Onengut-Gumuscu S, Greenbaum C, Concannon P, Buckner JH (2007) Genetic variation in PTPN22 corresponds to altered function of T and B lymphocytes. J Immunol 179:4704–4710PubMedGoogle Scholar
  21. 21.
    Miller SA, Dykes DD, Polesky HF (1988) A simple salting out procedure for extracting DNA from human nucleated cells. Nucleic Acids Res 16:1215PubMedCrossRefGoogle Scholar
  22. 22.
    Sokal RR, Rohlf JF (1981) Biometry. WH Freeman eds, New YorkGoogle Scholar
  23. 23.
    Saccucci P, Del Duca E, Rapini N, Verrotti A, Piccinini S, Maccari A et al (2008) Association between PTPN22 C1858T and type 1 diabetes: a replication in continental Italy. Tissue Antigens 71:234–237PubMedCrossRefGoogle Scholar
  24. 24.
    Candore G, Colonna-Romano G, Balistreri CR, Di Carlo D, Grimaldi MP, Listì F et al (2006) Biology of longevity: role of the innate immune system. Rejuvenation Res 9:143–148PubMedCrossRefGoogle Scholar
  25. 25.
    Bidwell J, Keen L, Gallagher G, Kimberly R, Huizinga T, McDermott MF et al (1999) Cytokine gene polymorphism in human disease: on-line databases. Genes Immun 1:3–19PubMedCrossRefGoogle Scholar
  26. 26.
    Lio D, Scola L, Crivello A, Colonna-Romano G, Candore G, Bonafé M et al (2002) Gender-specific association between −1082 IL-10 promoter polymorphism and longevity. Genes Immun 3:30–33PubMedCrossRefGoogle Scholar
  27. 27.
    Ferrucci L, Harris TB, Guralnik JM, Tracy RP, Corti MC, Cohen HJ et al (1999) Serum IL-6 level and the development of disability in older persons. J Am Geriatr Soc 47:639–646PubMedGoogle Scholar
  28. 28.
    Bonafè M, Olivieri F, Cavallone L, Giovagnetti S, Marchegiani F, Cardelli M et al (2001) A gender-dependent genetic predisposition to produce high levels of IL-6 is detrimental for longevity. Eur J Immunol 31:2357–2361PubMedCrossRefGoogle Scholar
  29. 29.
    Hasegawa K, Martin F, Huang G, Tumas D, Diehl L, Chan AC (2004) PEST domain-enriched tyrosine phosphatase (PEP) regulation of effector/memory T cells. Science 303:685–689PubMedCrossRefGoogle Scholar
  30. 30.
    Gomez LM, Anaya JM, Martin J (2005) Genetic influence of PTPN22 R620W polymorphism in tuberculosis. Hum Immunol 66:1242–1247PubMedCrossRefGoogle Scholar
  31. 31.
    Lamsyah H, Rueda B, Baassi L, Elaouad R, Bottini N, Sadki K et al (2009) Association of PTPN22 gene functional variants with development of pulmonary tuberculosis in Moroccan population. Tissue Antigens 74:228–232PubMedCrossRefGoogle Scholar
  32. 32.
    Tocque K, Bellis MA, Tam CM, Chan SL, Syed Q, Remmington T et al (1998) Long-term trends in tuberculosis. Comparison of age-cohort data between Hong Kong and England and Wales. Am J Respir Crit Care Med 158:484–488PubMedGoogle Scholar
  33. 33.
    Franceschi C, Bonafe M, Valensin S, Olivieri F, De Luca M, Ottavini E et al (2000) Inflamm-aging. An evolutionary perspective on immunosenescence. Ann N Y Acad Sci 908:244–254PubMedCrossRefGoogle Scholar
  34. 34.
    Ammendola M, Bottini N, Pietropolli A, Saccucci P, Gloria-Bottini F (2008) Association between PTPN22 and endometriosis. Fertil Steril 89:993–994PubMedCrossRefGoogle Scholar
  35. 35.
    Latiano A, Palmieri O, Valvano MR, Bossa F, Latiano T, Corritore G et al (2007) Evaluating the role of genetic variations of PTPN22, NFKB1, and FcGRIIIA genes in inflammatory bowel disease: a meta-analysis. Inflamm Bowel Dis 13:1212–1219PubMedCrossRefGoogle Scholar
  36. 36.
    Petrone A, Suraci C, Capizzi M, Giaccari A, Bosi E, Tiberti C et al (2008) The protein tyrosine phosphatase nonreceptor 22 (PTPN22) is associated with high GAD antibody titer in latent autoimmune diabetes in adults: Non Insulin Requiring Autoimmune Diabetes (NIRAD) Study 3. Diabetes Care 31:534–538PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2010

Authors and Affiliations

  • Valerio Napolioni
    • 1
  • Annalia Natali
    • 1
  • Patrizia Saccucci
    • 2
  • Nazzareno Lucarini
    • 1
  1. 1.Laboratory of Human Genetics, School of Biosciences and BiotechnologiesUniversity of CamerinoCamerinoItaly
  2. 2.Department of Biopathology and Imaging DiagnosticsUniversity of Tor VergataRomeItaly

Personalised recommendations