Molecular Biology Reports

, Volume 38, Issue 6, pp 4225–4230 | Cite as

Sphingosine-1-phosphate: a potential therapeutic target for rheumatoid arthritis

  • Peng-fei Hu
  • Yi Chen
  • Peng-fei Cai
  • Li-feng Jiang
  • Li-dong Wu


Rheumatoid arthritis (RA) is a chronic systemic autoimmune disease, which has as its primary target, the synovial tissues and articular cartilage. The current pharmacological treatment of RA includes non-steroidal anti-inflammatory drugs, corticosteroids, and disease-modifying anti-rheumatic drugs. Newer biological agents that work by inactivation of proinflammatory cytokines are available for treatment of RA. Sphingosine-1-phosphate (S1P) is a bioactive lipid that is generated from phosphorylation of sphingosine by activation of sphingosine kinase, and has been implicated as an important mediator in pathophysiological processes, including cell growth, differentiation, migration and survival, and angiogenesis. Several studies have explored the role of S1P in the pathogenesis of RA. The aim of this article was to review the biology and distribution of S1P, together with its role in RA, and to discuss its potential as a therapeutic target for RA.


Rheumatoid arthritis Sphingosine-1-phosphate Sphingosine kinase Therapeutic target 


  1. 1.
    Gabriel SE (2001) The epidemiology of rheumatoid arthritis. Rheum Dis Clin North Am 27:269–281PubMedCrossRefGoogle Scholar
  2. 2.
    Firestein GS (2003) Evolving concepts of rheumatoid arthritis. Nature 423:356–361PubMedCrossRefGoogle Scholar
  3. 3.
    Janossy G, Panayi G, Duke O, Bofill M, Poulter LW, Goldstein G (1981) Rheumatoid arthritis: a disease of T-lymphocyte/macrophage immunoregulation. Lancet 2:839–842PubMedCrossRefGoogle Scholar
  4. 4.
    Kinne RW, Brauer R, Stuhlmuller B, Palombo-Kinne E, Burmester GR (2000) Macrophages in rheumatoid arthritis. Arthritis Res 2:189–202PubMedCrossRefGoogle Scholar
  5. 5.
    Firestein GS, Alvaro-Gracia JM, Maki R (1990) Quantitative analysis of cytokine gene expression in rheumatoid arthritis. J Immunol 144:3347–3353PubMedGoogle Scholar
  6. 6.
    Saxne T, Palladino MA Jr, Heinegard D, Talal N, Wollheim FA (1988) Detection of tumor necrosis factor alpha but not tumor necrosis factor beta in rheumatoid arthritis synovial fluid and serum. Arthritis Rheum 31:1041–1045PubMedCrossRefGoogle Scholar
  7. 7.
    McInnes IB, Schett G (2007) Cytokines in the pathogenesis of rheumatoid arthritis. Nat Rev Immunol 7:429–442PubMedCrossRefGoogle Scholar
  8. 8.
    Feldmann M, Brennan FM, Maini RN (1996) Role of cytokines in rheumatoid arthritis. Annu Rev Immunol 14:397–440PubMedCrossRefGoogle Scholar
  9. 9.
    O’Dell JR (2004) Therapeutic strategies for rheumatoid arthritis. N Engl J Med 350:2591–2602PubMedCrossRefGoogle Scholar
  10. 10.
    Olsen NJ, Stein CM (2004) New drugs for rheumatoid arthritis. N Engl J Med 350:2167–2179PubMedCrossRefGoogle Scholar
  11. 11.
    Maceyka M, Payne SG, Milstien S, Spiegel S (2002) Sphingosine kinase, sphingosine-1-phosphate, and apoptosis. Biochim Biophys Acta 1585:193–201PubMedGoogle Scholar
  12. 12.
    Melendez AJ (2008) Sphingosine kinase signalling in immune cells: potential as novel therapeutic targets. Biochim Biophys Acta 1784:66–75PubMedGoogle Scholar
  13. 13.
    Pettus BJ, Bielawski J, Porcelli AM, Reames DL, Johnson KR, Morrow J, Chalfant CE, Obeid LM, Hannun YA (2003) The sphingosine kinase 1/sphingosine-1-phosphate pathway mediates COX-2 induction and PGE2 production in response to TNF-alpha. FASEB J 17:1411–1421PubMedCrossRefGoogle Scholar
  14. 14.
    Lai WQ, Irwan AW, Goh HH, Howe HS, Yu DT, Valle-Onate R, McInnes IB, Melendez AJ, Leung BP (2008) Anti-inflammatory effects of sphingosine kinase modulation in inflammatory arthritis. J Immunol 181:8010–8017PubMedGoogle Scholar
  15. 15.
    Lai WQ, Irwan AW, Goh HH, Melendez AJ, McInnes IB, Leung BP (2009) Distinct roles of sphingosine kinase 1 and 2 in murine collagen-induced arthritis. J Immunol 183:2097–2103PubMedCrossRefGoogle Scholar
  16. 16.
    Spiegel S, Milstien S (2003) Sphingosine-1-phosphate: an enigmatic signalling lipid. Nat Rev Mol Cell Biol 4:397–407PubMedCrossRefGoogle Scholar
  17. 17.
    Spiegel S, Milstien S (2002) Sphingosine 1-phosphate, a key cell signaling molecule. J Biol Chem 277:25851–25854PubMedCrossRefGoogle Scholar
  18. 18.
    Pyne S, Pyne NJ (2000) Sphingosine 1-phosphate signalling in mammalian cells. Biochem J 349:385–402PubMedCrossRefGoogle Scholar
  19. 19.
    Sanchez T, Hla T (2004) Structural and functional characteristics of S1P receptors. J Cell Biochem 92:913–922PubMedCrossRefGoogle Scholar
  20. 20.
    Van Brocklyn JR, Lee MJ, Menzeleev R, Olivera A, Edsall L, Cuvillier O, Thomas DM, Coopman PJ, Thangada S, Liu CH, Hla T, Spiegel S (1998) Dual actions of sphingosine-1-phosphate: extracellular through the Gi-coupled receptor Edg-1 and intracellular to regulate proliferation and survival. J Cell Biol 142:229–240PubMedCrossRefGoogle Scholar
  21. 21.
    Choi OH, Kim JH, Kinet JP (1996) Calcium mobilization via sphingosine kinase in signalling by the Fc epsilon RI antigen receptor. Nature 380:634–636PubMedCrossRefGoogle Scholar
  22. 22.
    Kohama T, Olivera A, Edsall L, Nagiec MM, Dickson R, Spiegel S (1998) Molecular cloning and functional characterization of murine sphingosine kinase. J Biol Chem 273:23722–23728PubMedCrossRefGoogle Scholar
  23. 23.
    Kamada K, Arita N, Tsubaki T, Takubo N, Fujino T, Soga Y, Miyazaki T, Yamamoto H, Nose M (2009) Expression of sphingosine kinase 2 in synovial fibroblasts of rheumatoid arthritis contributing to apoptosis by a sphingosine analogue, FTY720. Pathol Int 59:382–389PubMedCrossRefGoogle Scholar
  24. 24.
    Olivera A, Kohama T, Edsall L, Nava V, Cuvillier O, Poulton S, Spiegel S (1999) Sphingosine kinase expression increases intracellular sphingosine-1-phosphate and promotes cell growth and survival. J Cell Biol 147:545–558PubMedCrossRefGoogle Scholar
  25. 25.
    Olivera A, Rosenfeldt HM, Bektas M, Wang F, Ishii I, Chun J, Milstien S, Spiegel S (2003) Sphingosine kinase type 1 induces G12/13-mediated stress fiber formation, yet promotes growth and survival independent of G protein-coupled receptors. J Biol Chem 278:46452–46460PubMedCrossRefGoogle Scholar
  26. 26.
    Wadgaonkar R, Patel V, Grinkina N, Romano C, Liu J, Zhao Y, Sammani S, Garcia JG, Natarajan V (2009) Differential regulation of sphingosine kinases 1 and 2 in lung injury. Am J Physiol Lung Cell Mol Physiol 296:L603–L613PubMedCrossRefGoogle Scholar
  27. 27.
    Hofmann LP, Ren S, Schwalm S, Pfeilschifter J, Huwiler A (2008) Sphingosine kinase 1 and 2 regulate the capacity of mesangial cells to resist apoptotic stimuli in an opposing manner. Biol Chem 389:1399–1407PubMedCrossRefGoogle Scholar
  28. 28.
    Igarashi N, Okada T, Hayashi S, Fujita T, Jahangeer S, Nakamura S (2003) Sphingosine kinase 2 is a nuclear protein and inhibits DNA synthesis. J Biol Chem 278:46832–46839PubMedCrossRefGoogle Scholar
  29. 29.
    Yang L, Yatomi Y, Miura Y, Satoh K, Ozaki Y (1999) Metabolism and functional effects of sphingolipids in blood cells. Br J Haematol 107:282–293PubMedCrossRefGoogle Scholar
  30. 30.
    Weigert A, Weis N, Brune B (2009) Regulation of macrophage function by sphingosine-1-phosphate. Immunobiology 214:748–760PubMedCrossRefGoogle Scholar
  31. 31.
    Deutschman DH, Carstens JS, Klepper RL, Smith WS, Page MT, Young TR, Gleason LA, Nakajima N, Sabbadini RA (2003) Predicting obstructive coronary artery disease with serum sphingosine-1-phosphate. Am Heart J 146:62–68PubMedCrossRefGoogle Scholar
  32. 32.
    Kitano M, Hla T, Sekiguchi M, Kawahito Y, Yoshimura R, Miyazawa K, Iwasaki T, Sano H, Saba JD, Tam YY (2006) Sphingosine 1-phosphate/sphingosine 1-phosphate receptor 1 signaling in rheumatoid synovium: regulation of synovial proliferation and inflammatory gene expression. Arthritis Rheum 54:742–753PubMedCrossRefGoogle Scholar
  33. 33.
    Pi X, Tan SY, Hayes M, Xiao L, Shayman JA, Ling S, Holoshitz J (2006) Sphingosine kinase 1-mediated inhibition of Fas death signaling in rheumatoid arthritis B lymphoblastoid cells. Arthritis Rheum 54:754–764PubMedCrossRefGoogle Scholar
  34. 34.
    Masuko K, Murata M, Nakamura H, Yudoh K, Nishioka K, Kato T (2007) Sphingosine-1-phosphate attenuates proteoglycan aggrecan expression via production of prostaglandin E2 from human articular chondrocytes. BMC Musculoskelet Disord 8:29PubMedCrossRefGoogle Scholar
  35. 35.
    Ohama T, Okada M, Murata T, Brautigan DL, Hori M, Ozaki H (2008) Sphingosine-1-phosphate enhances IL-1{beta}-induced COX-2 expression in mouse intestinal subepithelial myofibroblasts. Am J Physiol Gastrointest Liver Physiol 295:G766–G775PubMedCrossRefGoogle Scholar
  36. 36.
    Hammad SM, Crellin HG, Wu BX, Melton J, Anelli V, Obeid LM (2008) Dual and distinct roles for sphingosine kinase 1 and sphingosine 1 phosphate in the response to inflammatory stimuli in RAW macrophages. Prostaglandins Other Lipid Mediat 85:107–114PubMedCrossRefGoogle Scholar
  37. 37.
    Melendez AJ, Ibrahim FB (2004) Antisense knockdown of sphingosine kinase 1 in human macrophages inhibits C5a receptor-dependent signal transduction, Ca2+ signals, enzyme release, cytokine production, and chemotaxis. J Immunol 173:1596–1603PubMedGoogle Scholar
  38. 38.
    Wang L, Cummings R, Usatyuk P, Morris A, Irani K, Natarajan V (2002) Involvement of phospholipases D1 and D2 in sphingosine 1-phosphate-induced ERK (extracellular-signal-regulated kinase) activation and interleukin-8 secretion in human bronchial epithelial cells. Biochem J 367:751–760PubMedCrossRefGoogle Scholar
  39. 39.
    Sekiguchi M, Iwasaki T, Kitano M, Kuno H, Hashimoto N, Kawahito Y, Azuma M, Hla T, Sano H (2008) Role of sphingosine 1-phosphate in the pathogenesis of Sjogren’s syndrome. J Immunol 180:1921–1928PubMedGoogle Scholar
  40. 40.
    Tokumura A, Carbone LD, Yoshioka Y, Morishige J, Kikuchi M, Postlethwaite A, Watsky MA (2009) Elevated serum levels of arachidonoyl-lysophosphatidic acid and sphingosine 1-phosphate in systemic sclerosis. Int J Med Sci 6:168–176PubMedGoogle Scholar
  41. 41.
    Hughes JE, Srinivasan S, Lynch KR, Proia RL, Ferdek P, Hedrick CC (2008) Sphingosine-1-phosphate induces an antiinflammatory phenotype in macrophages. Circ Res 102:950–958PubMedCrossRefGoogle Scholar
  42. 42.
    Ogawa R, Takahashi M, Hirose S, Morimoto H, Ise H, Murakami T, Yasue T, Kuriyama K, Hongo M, Kobayashi E, Ikeda U (2007) A novel sphingosine-1-phosphate receptor agonist KRP-203 attenuates rat autoimmune myocarditis. Biochem Biophys Res Commun 361:621–628PubMedCrossRefGoogle Scholar
  43. 43.
    Vadas M, Xia P, McCaughan G, Gamble J (2008) The role of sphingosine kinase 1 in cancer: oncogene or non-oncogene addiction? Biochim Biophys Acta 1781:442–447PubMedGoogle Scholar
  44. 44.
    Kim MK, Lee HY, Kwak JY, Park JI, Yun J, Bae YS (2006) Sphingosine-1-phosphate stimulates rat primary chondrocyte proliferation. Biochem Biophys Res Commun 345:67–73PubMedCrossRefGoogle Scholar
  45. 45.
    Stradner MH, Hermann J, Angerer H, Setznagl D, Sunk IG, Windhager R, Graninger WB (2008) Spingosine-1-phosphate stimulates proliferation and counteracts interleukin-1 induced nitric oxide formation in articular chondrocytes. Osteoarthritis Cartilage 16:305–311PubMedCrossRefGoogle Scholar
  46. 46.
    Thirunavukkarasu K, Pei Y, Wei T (2007) Characterization of the human ADAMTS-5 (aggrecanase-2) gene promoter. Mol Biol Rep 34:225–231PubMedCrossRefGoogle Scholar
  47. 47.
    Huang K, Wu LD (2010) Suppression of aggrecanase: a novel protective mechanism of dehydroepiandrosterone in osteoarthritis? Mol Biol Rep 37:1241–1245Google Scholar
  48. 48.
    Little CB, Barai A, Burkhardt D, Smith SM, Fosang AJ, Werb Z, Shah M, Thompson EW (2009) Matrix metalloproteinase 13-deficient mice are resistant to osteoarthritic cartilage erosion but not chondrocyte hypertrophy or osteophyte development. Arthritis Rheum 60:3723–3733PubMedCrossRefGoogle Scholar
  49. 49.
    Ishii M, Egen JG, Klauschen F, Meier-Schellersheim M, Saeki Y, Vacher J, Proia RL, Germain RN (2009) Sphingosine-1-phosphate mobilizes osteoclast precursors and regulates bone homeostasis. Nature 458:524–528PubMedCrossRefGoogle Scholar
  50. 50.
    Takemura S, Klimiuk PA, Braun A, Goronzy JJ, Weyand CM (2001) T cell activation in rheumatoid synovium is B cell dependent. J Immunol 167:4710–4718PubMedGoogle Scholar
  51. 51.
    Hirano T, Matsuda T, Turner M, Miyasaka N, Buchan G, Tang B, Sato K, Shimizu M, Maini R, Feldmann M et al (1988) Excessive production of interleukin 6/B cell stimulatory factor-2 in rheumatoid arthritis. Eur J Immunol 18:1797–1801PubMedCrossRefGoogle Scholar
  52. 52.
    Zhao C, Fernandes MJ, Turgeon M, Tancrede S, Di Battista J, Poubelle PE, Bourgoin SG (2008) Specific and overlapping sphingosine-1-phosphate receptor functions in human synoviocytes: impact of TNF-alpha. J Lipid Res 49:2323–2337PubMedCrossRefGoogle Scholar
  53. 53.
    Maceyka M, Sankala H, Hait NC, Le Stunff H, Liu H, Toman R, Collier C, Zhang M, Satin LS, Merrill AH Jr, Milstien S, Spiegel S (2005) SphK1 and SphK2, sphingosine kinase isoenzymes with opposing functions in sphingolipid metabolism. J Biol Chem 280:37118–37129PubMedCrossRefGoogle Scholar
  54. 54.
    Maini R, St Clair EW, Breedveld F, Furst D, Kalden J, Weisman M, Smolen J, Emery P, Harriman G, Feldmann M, Lipsky P (1999) Infliximab (chimeric anti-tumour necrosis factor alpha monoclonal antibody) versus placebo in rheumatoid arthritis patients receiving concomitant methotrexate: a randomised phase III trial. ATTRACT Study Group. Lancet 354:1932–1939PubMedCrossRefGoogle Scholar
  55. 55.
    Weinblatt ME, Kremer JM, Bankhurst AD, Bulpitt KJ, Fleischmann RM, Fox RI, Jackson CG, Lange M, Burge DJ (1999) A trial of etanercept, a recombinant tumor necrosis factor receptor:Fc fusion protein, in patients with rheumatoid arthritis receiving methotrexate. N Engl J Med 340:253–259PubMedCrossRefGoogle Scholar
  56. 56.
    McCluggage LK, Scholtz JM (2010) Golimumab: a tumor necrosis factor alpha inhibitor for the treatment of rheumatoid arthritis. Ann Pharmacother 44:135–144Google Scholar
  57. 57.
    Weinblatt ME, Keystone EC, Furst DE, Moreland LW, Weisman MH, Birbara CA, Teoh LA, Fischkoff SA, Chartash EK (2003) Adalimumab, a fully human anti-tumor necrosis factor alpha monoclonal antibody, for the treatment of rheumatoid arthritis in patients taking concomitant methotrexate: the ARMADA trial. Arthritis Rheum 48:35–45PubMedCrossRefGoogle Scholar
  58. 58.
    Suzuki S, Enosawa S, Kakefuda T, Shinomiya T, Amari M, Naoe S, Hoshino Y, Chiba K (1996) A novel immunosuppressant, FTY720, with a unique mechanism of action, induces long-term graft acceptance in rat and dog allotransplantation. Transplantation 61:200–205PubMedCrossRefGoogle Scholar
  59. 59.
    Martin R (2010) Multiple sclerosis: closing in on an oral treatment. Nature 464:360–362PubMedCrossRefGoogle Scholar
  60. 60.
    Tedesco-Silva H, Lorber MI, Foster CE, Sollinger HW, Mendez R, Carvalho DB, Shapiro R, Rajagopalan PR, Mayer H, Slade J, Kahan BD (2009) FTY720 and everolimus in de novo renal transplant patients at risk for delayed graft function: results of an exploratory one-yr multicenter study. Clin Transplant 23:589–599PubMedCrossRefGoogle Scholar
  61. 61.
    Tsunemi S, Iwasaki T, Kitano S, Imado T, Miyazawa K, Sano H (2010) Effects of the novel immunosuppressant FTY720 in a murine rheumatoid arthritis model. Clin Immunol 136:197–204PubMedCrossRefGoogle Scholar
  62. 62.
    Matsuura M, Imayoshi T, Chiba K, Okumoto T (2000) Effect of FTY720, a novel immunosuppressant, on adjuvant-induced arthritis in rats. Inflamm Res 49:404–410PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2010

Authors and Affiliations

  • Peng-fei Hu
    • 1
  • Yi Chen
    • 2
  • Peng-fei Cai
    • 1
  • Li-feng Jiang
    • 1
  • Li-dong Wu
    • 1
  1. 1.Department of Orthopedics Surgerythe Second Affiliated Hospital of Medical College, Zhejiang UniversityHangzhouPeople’s Republic of China
  2. 2.Department of Neurologythe Second Affiliated Hospital, College of Medicine, Zhejiang UniversityZhejiangPeople’s Republic of China

Personalised recommendations