Molecular Biology Reports

, Volume 38, Issue 5, pp 3585–3591 | Cite as

IL-10 and TGF-β2 are overexpressed in tumor spheres cultured from human gliomas

  • Bo Qiu
  • Dongyong Zhang
  • Chao Wang
  • Jun Tao
  • Xinxin Tie
  • Ying Qiao
  • Ke Xu
  • Yunjie Wang
  • Anhua Wu
Article

Abstract

Immune-associated cytokines including IL-10 and TGF-β2 are thought to play a crucial role in immunosuppression mediated by gliomas. We have investigated the possibility that glioma stem cells are the major source of these cytokines. Tumor spheres, clonal non-adherent cell colonies derived from a single tumor stem cell, were cultured from surgical specimens of eight glioma patients, including two glioblastoma multiformes (grade IV), one anaplastic oligodendroglioma (grade III) and five anaplastic astrocytomas (grade III). Real-time RT-PCR and immunoassay were used to compare the relative expression levels of IL-10 and TGF-β2 in stem-cell-derived tumor sphere cells (TSCs) and primary cultured glioma cells (PCGCs). TSCs were confirmed to express the brain tumor stem cell marker CD133, and on in vitro differentiation gave rise to cells expressing neuronal or glial markers. RT-PCR and immunoassay revealed that mRNA and protein levels of both IL-10 and TGF-β2 were significantly higher in TSCs than in PCGCs from the same tumor. Interestingly, the degree of overexpression in TSCs, but not in PCGS, appeared to correlate with the pathological grade of the glioma. These findings suggest that glioma stem cells are likely to be the major tumor source of immunosuppressive cytokines and thereby play a crucial role in determining glioma malignancy.

Keywords

CD133 Glioma IL-10 Primary cultured glioma cells (PCGCs) TGF-β2 Tumor sphere cells (TSCs) 

Notes

Acknowledgments

This work was supported by the Chinese National Natural Science Foundation (30300100) and by the NCET (NCET-08-0867, Program for New Century Excellent Talents at the University).

Conflict of interest

No conflicts of interest exist.

References

  1. 1.
    Reardon DA, Rich JN, Friedman HS, Bigner DD (2006) Recent advances in the treatment of malignant astrocytoma. J Clin Oncol 24:1253–1265PubMedCrossRefGoogle Scholar
  2. 2.
    DeAngelis LM (2001) Brain tumors. N Engl J Med 344:114–123PubMedCrossRefGoogle Scholar
  3. 3.
    Grauer O, Poschl P, Lohmeier A, Adema GJ, Bogdahn U (2007) Toll-like receptor triggered dendritic cell maturation and IL-12 secretion are necessary to overcome t-cell inhibition by glioma-associated TGF-beta2. J Neurooncol 82:151–161PubMedCrossRefGoogle Scholar
  4. 4.
    Wick W, Naumann U, Weller M (2006) Transforming growth factor-beta: a molecular target for the future therapy of glioblastoma. Curr Pharm Des 12:341–349PubMedCrossRefGoogle Scholar
  5. 5.
    Singh SK, Clarke ID, Terasaki M et al (2003) Identification of a cancer stem cell in human brain tumors. Cancer Res 63:5821–5828PubMedGoogle Scholar
  6. 6.
    Singh SK, Hawkins C, Clarke ID et al (2004) Identification of human brain tumour initiating cells. Nature 432:396–401PubMedCrossRefGoogle Scholar
  7. 7.
    Galli R, Binda E, Orfanelli U et al (2004) Isolation and characterization of tumorigenic, stem-like neural precursors from human glioblastoma. Cancer Res 64:7011–7021PubMedCrossRefGoogle Scholar
  8. 8.
    Yuan X, Curtin J, Xiong Y et al (2004) Isolation of cancer stem cells from adult glioblastoma multiforme. Oncogene 23:9392–9400PubMedCrossRefGoogle Scholar
  9. 9.
    Wu A, Wiesner S, Xiao J et al (2007) Expression of MHC I and NK ligands on human CD133+ glioma cells: possible targets of immunotherapy. J Neurooncol 83:121–131PubMedCrossRefGoogle Scholar
  10. 10.
    Janelidze S, Bexell D, Badn W et al (2009) Immunizations with ifngamma secreting tumor cells can eliminate fully established and invasive rat gliomas. J Immunother 32:593–601PubMedCrossRefGoogle Scholar
  11. 11.
    Wu A, Oh S, Gharagozlou S et al (2007) In vivo vaccination with tumor cell lysate plus cpg oligodeoxynucleotides eradicates murine glioblastoma. J Immunother 30:789–797PubMedCrossRefGoogle Scholar
  12. 12.
    Izumoto S, Tsuboi A, Oka Y et al (2008) Phase II clinical trial of wilms tumor 1 peptide vaccination for patients with recurrent glioblastoma multiforme. J Neurosurg 108:963–971PubMedCrossRefGoogle Scholar
  13. 13.
    Yamanaka R, Homma J, Yajima N et al (2005) Clinical evaluation of dendritic cell vaccination for patients with recurrent glioma: results of a clinical phase I/II trial. Clin Cancer Res 11:4160–4167PubMedCrossRefGoogle Scholar
  14. 14.
    Grauer OM, Wesseling P, Adema GJ (2009) Immunotherapy of diffuse gliomas: biological background, current status and future developments. Brain Pathol 19:674–693PubMedCrossRefGoogle Scholar
  15. 15.
    Parney IF, Hao C, Petruk KC (2000) Glioma immunology and immunotherapy. Neurosurgery 46:778–791 discussion 791–772PubMedGoogle Scholar
  16. 16.
    Hishii M, Nitta T, Ishida H et al (1995) Human glioma-derived interleukin-10 inhibits antitumor immune responses in vitro. Neurosurgery 37:1160–1166; discussion 1166–1167PubMedCrossRefGoogle Scholar
  17. 17.
    Constam DB, Philipp J, Malipiero UV, ten Dijke P, Schachner M, Fontana A (1992) Differential expression of transforming growth factor-beta 1, -beta 2, and -beta 3 by glioblastoma cells, astrocytes, and microglia. J Immunol 148:1404–1410PubMedGoogle Scholar
  18. 18.
    Alcocer-Gonzalez JM, Berumen J, Tamez-Guerra R et al (2006) In vivo expression of immunosuppressive cytokines in human papillomavirus-transformed cervical cancer cells. Viral Immunol 19:481–491PubMedCrossRefGoogle Scholar
  19. 19.
    Beckebaum S, Zhang X, Chen X et al (2004) Increased levels of interleukin-10 in serum from patients with hepatocellular carcinoma correlate with profound numerical deficiencies and immature phenotype of circulating dendritic cell subsets. Clin Cancer Res 10:7260–7269PubMedCrossRefGoogle Scholar
  20. 20.
    Huettner C, Paulus W, Roggendorf W (1995) Messenger rna expression of the immunosuppressive cytokine IL-10 in human gliomas. Am J Pathol 146:317–322PubMedGoogle Scholar
  21. 21.
    Kjellman C, Olofsson SP, Hansson O et al (2000) Expression of TGF-beta isoforms, TGF-beta receptors, and smad molecules at different stages of human glioma. Int J Cancer 89:251–258PubMedCrossRefGoogle Scholar
  22. 22.
    von Bernstorff W, Voss M, Freichel S et al (2001) Systemic and local immunosuppression in pancreatic cancer patients. Clin Cancer Res 7:925s–932sGoogle Scholar
  23. 23.
    Tsamandas AC, Kardamakis D, Ravazoula P et al (2004) The potential role of TGFbeta1, TGFbeta2 and TGFbeta3 protein expression in colorectal carcinomas. Correlation with classic histopathologic factors and patient survival. Strahlenther Onkol 180:201–208PubMedCrossRefGoogle Scholar
  24. 24.
    Penuelas S, Anido J, Prieto-Sanchez RM et al (2009) TGF-beta increases glioma-initiating cell self-renewal through the induction of LIF in human glioblastoma. Cancer Cell 15:315–327PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2010

Authors and Affiliations

  • Bo Qiu
    • 1
  • Dongyong Zhang
    • 1
  • Chao Wang
    • 1
  • Jun Tao
    • 1
  • Xinxin Tie
    • 1
  • Ying Qiao
    • 2
  • Ke Xu
    • 3
  • Yunjie Wang
    • 1
  • Anhua Wu
    • 1
  1. 1.Department of NeurosurgeryFirst Hospital of China Medical UniversityShenyangPeople’s Republic of China
  2. 2.Central LabFirst Hospital of China Medical UniversityShenyangPeople’s Republic of China
  3. 3.Department of RadiologyFirst Hospital of China Medical UniversityShenyangPeople’s Republic of China

Personalised recommendations