Molecular Biology Reports

, Volume 38, Issue 5, pp 3367–3373 | Cite as

Complete mitochondrial genomes of two green lacewings, Chrysoperla nipponensis (Okamoto, 1914) and Apochrysa matsumurae Okamoto, 1912 (Neuroptera: Chrysopidae)

  • Naoto Haruyama
  • Atsushi Mochizuki
  • Yukie Sato
  • Hideshi Naka
  • Masashi Nomura


We describe the complete mitochondrial genomes of the green lacewing species Chrysoperla nipponensis (Okamoto, 1914) and Apochrysa matsumurae Okamoto 1912 (Neuroptera: Chrysopidae). The genomes were 16,057 and 16,214 bp in size, respectively, and comprised 37 genes (13 protein coding genes, 22 tRNA genes and two rRNA genes). A major noncoding (control) region was 1,244 bp in C. nipponensis and 1,407 in A. matsumurae, and the structure was simpler than that reported in other Neuroptera, lacking conserved blocks or long tandem repeats. The overall arrangement of genes was almost the same as that found in most arthropod mitochondrial genomes, with the one exception of a tRNA rearrangement to tRNA-Cys–tRNA-Trp–tRNA-Tyr, rather than the plesiomorphic tRNA-Trp–tRNA-Cys–tRNA-Tyr. A high A + T content (78.89 and 79.02%, respectively), A + T-rich codon bias, and a mismatch between the most-used codon and its corresponding tRNA anticodon were observed as a typical feature of the insect mitochondrial genome.


Complete mitochondrial DNA Neuropterida Neuroptera Chrysopidae Chrysopinae Apochrysinae 


CO1, CO2, and CO3

Cytochrome oxidase subunit I, II, and III genes, respectively


Cytochrome b gene

ATP6 and ATP8

ATP synthase F0 subunit 6 and 8 genes

ND1, ND2, ND3, ND4, ND4L, ND5, ND6

NADH dehydrogenase subunit 1–6 and 4L genes

srRNA and lrRNA

Small and large subunit (12S and 16S) ribosomal RNA genes; transfer RNA genes are designated by the three-letter or single-letter code for the specified amino acid, such as tRNA-Cys or C


  1. 1.
    Avise JA, Aronold J, Ball RM, Bermingham E, Neigel JE, Reeb CA et al (1987) Intraspecific phylogeography: the mitochondrial DNA bridge between population genetics and systematics. Annu Rev Ecol Syst 18:489–522Google Scholar
  2. 2.
    Boore JL, Macey JR, Medina M (2005) Sequencing and comparing whole mitochondrial genomes of animals. Methods Enzymol 395:311–348PubMedCrossRefGoogle Scholar
  3. 3.
    Wilson AC, Cann RL, Carr SM, George M, Gyllensten UB, Helm-Bychowski KM et al (1985) Mitochondrial DNA and two perspectives on the evolutionary genetics. Biol J Linn Soc 26:375–400CrossRefGoogle Scholar
  4. 4.
    Boore JL, Collins TM, Stanton D, Daehler LL, Brown WM (1995) Deducing the pattern of arthropod phylogeny from mitochondrial DNA rearrangements. Nature 376:163–165PubMedCrossRefGoogle Scholar
  5. 5.
    Boore JL, Lavrov DV, Brown WM (1998) Gene translocation links insects and crustaceans. Nature 392:667–668PubMedCrossRefGoogle Scholar
  6. 6.
    Boore JL (1999) Animal mitochondrial genomes. Nucleic Acids Res 27:1767–1780PubMedCrossRefGoogle Scholar
  7. 7.
    Curole JP, Kocher TD (1999) Mitogenomics: digging deeper with complete mitochondrial genomes. Trends Ecol Evol 14:394–398PubMedCrossRefGoogle Scholar
  8. 8.
    Feijão PC, Neiva LS, Azeredo-Espin AML, Lessinger AC (2006) AMiGA: the arthropodan mitochondrial genomes accessible database. Bioinformatics 22:902–903PubMedCrossRefGoogle Scholar
  9. 9.
    McEwen P, New TR, Whittington AE (eds) (2001) Lacewings in the crop environment. Cambridge University Press, CambridgeGoogle Scholar
  10. 10.
    Henry CS, Brooks SJ, Thierry D, Duelli P, Johnson JB (2001) The common green lacewing (Chrysoperla carnea s. lat.) and the sibling species problem. In: McEwen P, New TR, Whittington AE (eds) Lacewings in the crop environment. Cambridge University Press, Cambridge, pp 29–42CrossRefGoogle Scholar
  11. 11.
    Henry CS, Wells MM (2007) Can what we don’t know about lacewing systematic hurt us? A cautionary tale about mass rearing and release of “Chrysoperla carnea” (Neuroptera: Chrysopidae). Am Entomol 53:42–47Google Scholar
  12. 12.
    Henry CS, Wells MM, Simon C (1999) Convergent evolution of courtship songs among cryptic species of the carnea-group of green lacewings (Neuroptera: Chrysopidae: Chrysoperla). Evolution 53:1165–1179CrossRefGoogle Scholar
  13. 13.
    Lourenço P, Brito C, Backeljau T, Thierry D, Ventura MA (2006) Molecular systematic of the Chrysoperla carnea group (Neuroptera: Chrysopidae) in Europe. JZS 44:180–184CrossRefGoogle Scholar
  14. 14.
    Cameron SL, Sullivan J, Song H, Miller KB, Whiting MF (2009) A mitochondrial genome phylogeny of the Neuropterida (lace-wings, alderflies and snakeflies) and their relationship to the other holometabolous insect orders. Zool Scr 38:575–590CrossRefGoogle Scholar
  15. 15.
    Beckenbach AT, Stewart JB (2009) Insect mitochondrial genomics 3: the complete mitochondrial genome sequences of representatives from two neuropteroid orders: a dobsonfly (order Megaloptera) and a giant lacewing and an owl fly (order Neuroptera). Genome 52:31–38PubMedCrossRefGoogle Scholar
  16. 16.
    Hua J, Li M, Dong P, Xie Q, Bu W (2009) The mitochondrial genome of Protohermes concolorus Yang et Yang 1988 (Insecta: Megaloptera: Corydalidae). Mol Biol Rep 36:1757–1765PubMedCrossRefGoogle Scholar
  17. 17.
    Aspöck U (2002) Phylogeny of the Neuropterida (Insecta: Holometabola). Zool Scr 31:51–55CrossRefGoogle Scholar
  18. 18.
    Taki H, Kuroki S, Nomura M (2005) Taxonomic diversity within the Japanese green lacewing, Chrysoperla carnea (Neuroptera: Chrysopidae), identified by courtship song analyses and crossing tests. J Ethol 23:57–61CrossRefGoogle Scholar
  19. 19.
    Haruyama N, Mochizuki A, Duelli P, Naka H, Nomura M (2008) Green lacewing phylogeny, based on three nuclear genes (Chrysopidae, Neuroptera). Syst Entomol 33:275–288CrossRefGoogle Scholar
  20. 20.
    Simon C, Frati F, Beckenbach A, Crespi B, Liu H, Flook P (1994) Evolution, weighting, and phylogenetic utility of mitochondrial gene sequences and a compilation of conserved polymerase chain reaction primers. Ann Entomol Soc Am 87:651–701Google Scholar
  21. 21.
    Yagi T, Sasaki G, Takabe H (1999) Phylogeny of Japanese papilionid butterflies inferred from nucleotide sequences of the mitochondrial ND5 gene. J Mol Evol 48:42–48PubMedCrossRefGoogle Scholar
  22. 22.
    Croizer YC, Koulianos S, Croizer RH (1991) An improved test for Africanized honeybee mitochondrial DNA. Experientia 47:968–969CrossRefGoogle Scholar
  23. 23.
    Gordon D, Abajian C, Green P (1998) CONSED: a graphical tool for sequence finishing. Genome Res 8:195–202PubMedGoogle Scholar
  24. 24.
    Wyman SK, Jansen RK, Boore JL (2004) Automatic annotation of organellar genomes with DOGMA. Bioinformatics 20:3252–3255PubMedCrossRefGoogle Scholar
  25. 25.
    Perna NT, Kocher TD (1995) Patterns of nucleotide composition at fourfold degenerate sites of animal mitochondrial genomes. J Mol Evol 41:353–358PubMedCrossRefGoogle Scholar
  26. 26.
    Stewart JB, Beckenbach AT (2005) Insect mitochondrial genomics: the complete mitochondrial genome sequence of the meadow spittlebug Philaenus spumarius (Hemiptera: Auchenorrhyncha: Cercopoidae). Genome 48:46–54PubMedCrossRefGoogle Scholar
  27. 27.
    Clay DO, Wolstenholme DR (1985) The mitochondrial DNA molecule of Drosophila yakuba: nucleotide sequence, gene organization, and genetic code. J Mol Ecol 22:252–271CrossRefGoogle Scholar
  28. 28.
    Flook PK, Rowell CH, Gellissen G (1995) The sequence, organization, and evolution of the Locusta migratoria mitochondrial genome. J Mol Evol 41:928–941PubMedCrossRefGoogle Scholar
  29. 29.
    Hickerson MJ, Cunningham CW (2000) Dramatic mitochondrial gene rearrangements in the hermit crab Pagurus longicarpus (Crustacea, anomura). Mol Biol Evol 17:639–644PubMedGoogle Scholar
  30. 30.
    Nardi F, Carapelli A, Fanciulli PP, Dallai R, Frati F (2001) The complete mitochondrial DNA sequence of the basal hexapod Tetrodontophora bielanensis: evidence for heteroplasmy and tRNA translocations. Mol Biol Evol 18:1293–1304PubMedGoogle Scholar
  31. 31.
    Morlais I, Severson DW (2002) Complete mitochondrial DNA sequence and amino acid analysis of the cytochrome c oxidase subunit I (COI) from Aedes aegypti. DNA Seq 13:123–127PubMedGoogle Scholar
  32. 32.
    Krzywinski J, Grushko OG, Besansky NJ (2006) Analysis of the complete mitochondrial DNA from Anopheles funestus: an improved dipteran mitochondrial genome annotation and a temporal dimension of mosquito evolution. Mol Phylogenet Evol 39:417–423PubMedCrossRefGoogle Scholar
  33. 33.
    Oliveira MT, Azeredo-Espin AML, Lessinger AC (2005) Evolutionary and structural analysis of the cytochrome c oxidase subunit I (COI) gene from Haematobia irritans, Stomoxys calcitrans and Musca domestica mitochondrial DNA. DNA Seq 16:156–160PubMedGoogle Scholar
  34. 34.
    Oliveira MT, Barau JG, Junqueira ACM, Feijão PC, Da Rosa AC, Abreu CF, Azeredo-Espin AML, Lessinger AC (2008) Structure and evolution of the mitochondrial genomes of Haematobia irritans and Stomoxys calcitrans: the Muscidae (Diptera: Calyptratae) perspective. Mol Phylogenet Evol 48:850–857PubMedCrossRefGoogle Scholar
  35. 35.
    Francino MP, Ochman H (1997) Strand asymmetries in DNA evolution. Trends Genet 13:240–245PubMedCrossRefGoogle Scholar
  36. 36.
    Hassanin A, Leger N, Deutsch J (2005) Evidence for multiple reversals of asymmetric mutational constraints during the evolution of the mitochondrial genome of metazoa, and consequences for phylogenetic inferences. Syst Biol 54:277–298PubMedCrossRefGoogle Scholar
  37. 37.
    Bulmer M (1987) Coevolution of codon usage and transfer RNA abundance. Nature 325:728–730PubMedCrossRefGoogle Scholar
  38. 38.
    Reyes A, Gissi C, Pesole G, Saccone C (1998) Asymmetrical directional mutation pressure in the mitochondrial genome of mammals. Mol Biol Evol 15:957–966PubMedGoogle Scholar
  39. 39.
    Saccone C, De Giorgi C, Gissi C, Pesole G, Reyes A (1999) Evolutionary genomics in metazoa: the mitochondrial DNA as a model system. Gene 238:195–209PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2010

Authors and Affiliations

  • Naoto Haruyama
    • 1
  • Atsushi Mochizuki
    • 2
  • Yukie Sato
    • 2
  • Hideshi Naka
    • 3
  • Masashi Nomura
    • 1
  1. 1.Laboratory of Applied Entomology, Graduate School of HorticultureChiba UniversityMatsudo, ChibaJapan
  2. 2.Biodiversity DivisionNational Institute for Agro-Environmental SciencesIbarakiJapan
  3. 3.Faculty of AgricultureTottori UniversityTottoriJapan

Personalised recommendations