Molecular Biology Reports

, Volume 38, Issue 5, pp 3351–3354 | Cite as

Comparison of DGGE and immunohistochemistry in the detection of TP53 variants in a Brazilian sample of sporadic breast tumors

  • Vitor Rezende da Costa Aguiar
  • Melissa de Freitas Cordeiro-Silva
  • Alex Assis de Carvalho
  • Iúri Drumond Louro


The presence of TP53 gene mutations in breast cancer has been associated with worse prognosis. These mutations interfere with the ability of the p53 protein, a transcription factor, to regulate the expression of target genes. Unlike the wild-type protein, which is rapidly degraded in cells, mutated forms have increased half-life and accumulate in tumor cells. Immunohistochemistry (IHC) is widely used in Brazil in the determination of breast cancer patients’ prognosis. However, this technique is not able to detect many altered forms of the p53 protein (false-negative results) and readily detects the accumulation of wild-type p53 (false-positive results) that is associated with non-tumoral processes. For these reasons, we have set out to compare the efficiency of IHC with a molecular technique that detects gene variations at the DNA level in the evaluation of Brazilian patients with sporadic breast cancer. We have used denaturing gradient gel electrophoresis (DGGE) to study the TP53 status in 45 tumors, finding 26 allelic variants, most of them located in exon 4. Comparing the two techniques, IHC showed a false-negative rate of 64% and a false-positive rate of 50%. These results confirm the inability of IHC to correctly detect TP53 status, reason because it should not be routinely used to establish prognosis of breast cancer patients in Brazilian Pathology Laboratories. We recommend the utilization of a screening method, such as DGGE, followed by sequencing of altered exonic fragments to correctly detect TP53 gene variants and establish the prognosis of breast cancer patients.


Breast cancer Risk assessment Prognosis Denaturing gradient gel electrophoresis Immunohistochemistry TP53 False negative False positive 


  1. 1.
    Ferlay J, Bray F, Pisane P, Parkin DMJ (2001) Cancer incidence, mortality and prevalence worldwide. IARC Press, LyonGoogle Scholar
  2. 2.
    Stewart BW, Kleihues P (2003) World cancer report. IARC Press, LyonGoogle Scholar
  3. 3.
    Børresen-Dale AL (2003) TP53 and breast cancer. Hum Mutat 21:292–300PubMedCrossRefGoogle Scholar
  4. 4.
    Ingvarsson S (1999) Molecular genetics of breast cancer progression. Semin Cancer Biol 9(4):277–288PubMedCrossRefGoogle Scholar
  5. 5.
    Vogelstein B, Lane D, Levine AJ (2000) Surfing the p53 network. Nature 408:307–310PubMedCrossRefGoogle Scholar
  6. 6.
    Lacroix M, Toillon R, Leclercq G (2006) p53 and breast cancer, an update. Endocr Relat Cancer 13:293–325PubMedCrossRefGoogle Scholar
  7. 7.
    Olivier M, Petitjean A, Marcel V, Pétré A, Mounawar M, Plymoth A, Fromentel CC, Hainaut P (2008) Recent advances in p53 research: an interdisciplinary perspective. Cancer Gene Ther 16:1–12PubMedCrossRefGoogle Scholar
  8. 8.
    Olivier M, Langerød A et al (2006) The clinical value of somatic TP53 gene mutations in 1,794 patients with breast cancer. Clin Cancer Res 4:1157–1167CrossRefGoogle Scholar
  9. 9.
    Petijean A, Achatz MIW, Børresen-Dale AL, Hainault P, Olivier M (2007) TP53 mutations in human cancers: functional selection and impact on cancer prognosis and outcomes. Oncogene 26:2157–2165CrossRefGoogle Scholar
  10. 10.
    Batinac T, Zamolo G, Jonjíc N, Gruber F, Petrovecki M (2004) p53 protein expression and cell proliferation in non-neoplastic and neoplastic proliferative skin diseases. Tumori 90:120–127PubMedGoogle Scholar
  11. 11.
    Langerød A, Zhao H, Borgan Ø, Nesland JM, Bukholm IRK, Ikdahl T, Kåresen R, Børresen-Dale AL, Jeffrey SS (2007) TP53 mutation status and gene expression profiles are powerful prognostic markers of breast cancer. Breast Cancer Res 9(3):R30PubMedCrossRefGoogle Scholar
  12. 12.
    Geisler S, Lønning PE, Aas T, Johnsen H, Fluge Ø, Haugen DF, Lillehaug JR, Akslen LA, Børresen-Dale AL (2001) Influence of TP53 gene alterations and c-erbb-2 expression on the response to treatment with doxorubicin in locally advanced breast cancer. Cancer Res 61(6):2505–2512PubMedGoogle Scholar
  13. 13.
    Geisler S, Børresen-Dale AL, Johnsen H, Aas T, Geisler J, Akslen LA, Anker G, Lønning PE (2003) TP53 gene mutations predict the response to neoadjuvant treatment with 5-fluorouracil and mitomycin in locally advanced breast cancer. Clin Cancer Res 9(15):5582–5588PubMedGoogle Scholar
  14. 14.
    Done SJ, Eskandarian S, Bull S, Redston M, Andrulis IL (2001) p53 missense mutations in microdissected high-grade ductal carcinoma in situ of the breast. J Natl Cancer Inst 93(9):700–704PubMedCrossRefGoogle Scholar
  15. 15.
    Aas T, Børresen-Dale AL, Geisler S, Smith-Sørensen B, Johnsen H, Varhaug JE, Akslen LA (1996) Specific p53 mutations are associated with de novo resistance to doxorubicin in breast cancer patients. Nat Med 2(7):811–814PubMedCrossRefGoogle Scholar
  16. 16.
    Alsner J, Yilmaz M, Guldberg P, Hansen LH, Overgaard J (2000) Heterogeneity in the clinical phenotype of TP53 mutations in breast cancer patients. Clin Cancer Res 6(10):3923–3931PubMedGoogle Scholar
  17. 17.
    Sjögren S, Ingands M, Norberg T, Lindgren A, Nordgren H, Holmberg L, Bergh J (1996) The p53 gene in breast cancer: prognostic value of complementary DNA sequencing versus immunohistochemistry. J Natl Cancer Inst 88(3–4):173–182PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2010

Authors and Affiliations

  • Vitor Rezende da Costa Aguiar
    • 1
  • Melissa de Freitas Cordeiro-Silva
    • 1
  • Alex Assis de Carvalho
    • 2
  • Iúri Drumond Louro
    • 1
  1. 1.Núcleo de Genética Humana e Molecular, Departamento de Ciências Biológicas, Centro de Ciências Humanas e NaturaisUniversidade Federal do Espírito SantoVitóriaBrazil
  2. 2.Departamento de Patologia, Centro de Ciências da SaúdeUniversidade Federal do Espírito SantoVitóriaBrazil

Personalised recommendations