Advertisement

Molecular Biology Reports

, Volume 38, Issue 4, pp 2785–2791 | Cite as

ERK mediates anti-apoptotic effect through phosphorylation and cytoplasmic localization of p21Waf1/Cip1/Sdi in response to DNA damage in normal human embryonic fibroblast (HEF) cells

  • Jee-In Heo
  • Soo-Jin Oh
  • Yoon-Jung Kho
  • Jeong-Hyeon Kim
  • Hong-Joon Kang
  • Seong-Hoon Park
  • Hyun-Seok Kim
  • Jong-Yeon Shin
  • Min-Ju Kim
  • Sung Chan Kim
  • Jae-Bong Park
  • Jaebong Kim
  • Jae-Yong LeeEmail author
Article

Abstract

Since anti-apoptotic effect of ERK has not been elucidated clearly in DNA-damage-induced cell death, the role of ERK was examined in normal HEF cells treated with mild DNA damage using etoposide or camptothecin. ERK was activated by DNA damage in HEF cells. PD98059 increased apoptosis and reduced DNA-damage-induced p21Waf1/Cip1/Sdi level. Depletion of p21Waf1/Cip1/Sdi induced cell death and PD98059 induced additional cell death. DNA-damage-induced increase in cytoplasmic localization and phosphorylation of threonine residues of p21Waf1/Cip1/Sdi was reversed by PD98059. Thus, the results suggest that ERK pathway mediates anti-apoptotic effects through phosphorylation and cytoplasmic localization of p21Waf1/Cip1/Sdi in response to mild DNA damage.

Keywords

p21 ERK Etoposide Camptothecin HEF Apoptosis 

Notes

Acknowledgment

This work was supported by Priority Research Centers Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education, Science and Technology (2009-0094074).

References

  1. 1.
    Ramos JW (2008) The regulation of extracellular signal-regulated kinase (erk) in mammalian cells. Int J Biochem Cell Biol 40(12):2707–2719PubMedCrossRefGoogle Scholar
  2. 2.
    Yoon S, Seger R (2006) The extracellular signal-regulated kinase: multiple substrates regulate diverse cellular functions. Growth Factors 24(1):21–44PubMedCrossRefGoogle Scholar
  3. 3.
    Shaul YD, Seger R (2007) The mek/erk cascade: from signaling specificity to diverse functions. Biochim Biophys Acta 1773(8):1213–1226PubMedCrossRefGoogle Scholar
  4. 4.
    Xia Z, Dickens M, Raingeaud J, Davis RJ, Greenberg ME (1995) Opposing effects of erk and jnk-p38 map kinases on apoptosis. Science 270(5240):1326–1331PubMedCrossRefGoogle Scholar
  5. 5.
    von Gise A, Lorenz P, Wellbrock C, Hemmings B, Berberich-Siebelt F, Rapp UR, Troppmair J (2001) Apoptosis suppression by raf-1 and mek1 requires mek- and phosphatidylinositol 3-kinase-dependent signals. Mol Cell Biol 21(7):2324–2336CrossRefGoogle Scholar
  6. 6.
    Holmstrom TH, Schmitz I, Soderstrom TS, Poukkula M, Johnson VL, Chow SC, Krammer PH, Eriksson JE (2000) Mapk/erk signaling in activated t cells inhibits cd95/fas-mediated apoptosis downstream of disc assembly. EMBO J 19(20):5418–5428PubMedCrossRefGoogle Scholar
  7. 7.
    Rubinfeld H, Seger R (2005) The erk cascade: a prototype of mapk signaling. Mol Biotechnol 31(2):151–174PubMedCrossRefGoogle Scholar
  8. 8.
    Ballif BA, Blenis J (2001) Molecular mechanisms mediating mammalian mitogen-activated protein kinase (mapk) kinase (mek)-mapk cell survival signals. Cell Growth Differ 12(8):397–408PubMedGoogle Scholar
  9. 9.
    Gorospe M, Cirielli C, Wang X, Seth P, Capogrossi MC, Holbrook NJ (1997) P21(waf1/cip1) protects against p53-mediated apoptosis of human melanoma cells. Oncogene 14(8):929–935PubMedCrossRefGoogle Scholar
  10. 10.
    Gorospe M, Wang X, Guyton KZ, Holbrook NJ (1996) Protective role of p21(waf1/cip1) against prostaglandin a2-mediated apoptosis of human colorectal carcinoma cells. Mol Cell Biol 16(12):6654–6660PubMedGoogle Scholar
  11. 11.
    Mahyar-Roemer M, Roemer K (2001) P21 waf1/cip1 can protect human colon carcinoma cells against p53-dependent and p53-independent apoptosis induced by natural chemopreventive and therapeutic agents. Oncogene 20(26):3387–3398PubMedCrossRefGoogle Scholar
  12. 12.
    Wang Y, Blandino G, Givol D (1999) Induced p21waf expression in h1299 cell line promotes cell senescence and protects against cytotoxic effect of radiation and doxorubicin. Oncogene 18(16):2643–2649PubMedCrossRefGoogle Scholar
  13. 13.
    Densham RM, O’Neill E, Munro J, Konig I, Anderson K, Kolch W, Olson MF (2009) Mst kinases monitor actin cytoskeletal integrity and signal via c-jun n-terminal kinase stress-activated kinase to regulate p21Waf1/Cip1 stability. Mol Cell Biol 29(24):6380–6390PubMedCrossRefGoogle Scholar
  14. 14.
    Li Y, Dowbenko D, Lasky LA (2002) Akt/pkb phosphorylation of p21cip/waf1 enhances protein stability of p21cip/waf1 and promotes cell survival. J Biol Chem 277(13):11352–11361PubMedCrossRefGoogle Scholar
  15. 15.
    Kim GY, Mercer SE, Ewton DZ, Yan Z, Jin K, Friedman E (2002) The stress-activated protein kinases p38 alpha and jnk1 stabilize p21(cip1) by phosphorylation. J Biol Chem 277(33):29792–29802PubMedCrossRefGoogle Scholar
  16. 16.
    Hwang CY, Lee C, Kwon KS (2009) Extracellular signal-regulated kinase 2-dependent phosphorylation induces cytoplasmic localization and degradation of p21cip1. Mol Cell Biol 29(12):3379–3389PubMedCrossRefGoogle Scholar
  17. 17.
    Rossig L, Badorff C, Holzmann Y, Zeiher AM, Dimmeler S (2002) Glycogen synthase kinase-3 couples akt-dependent signaling to the regulation of p21cip1 degradation. J Biol Chem 277(12):9684–9689PubMedCrossRefGoogle Scholar
  18. 18.
    Facchinetti MM, De Siervi A, Toskos D, Senderowicz AM (2004) Ucn-01-induced cell cycle arrest requires the transcriptional induction of p21(waf1/cip1) by activation of mitogen-activated protein/extracellular signal-regulated kinase kinase/extracellular signal-regulated kinase pathway. Cancer Res 64(10):3629–3637PubMedCrossRefGoogle Scholar
  19. 19.
    Yang X, Wang W, Fan J, Lal A, Yang D, Cheng H, Gorospe M (2004) Prostaglandin a2-mediated stabilization of p21 mRNA through an ERK-dependent pathway requiring the RNA-binding protein hur. J Biol Chem 279(47):49298–49306PubMedCrossRefGoogle Scholar
  20. 20.
    Kim YK, Bae GU, Kang JK, Park JW, Lee EK, Lee HY, Choi WS, Lee HW, Han JW (2006) Cooperation of H2O2-mediated erk activation with Smad pathway in TGF-beta1 induction of p21Waf1/Cip1. Cell Signal 18(2):236–243PubMedCrossRefGoogle Scholar
  21. 21.
    Kim HS, Yeo EJ, Park SH, Park JI, Park SC, Shin JY, Kim MJ, Oh SJ, Won MH, Kang TC, Park JB, Kim J, Kim JI, Lee HY, Lee JY (2005) P21waf/cip1/sdi1 is upregulated due to increased mRNA stability during hydroxyurea-induced senescence of human fibroblasts. Mech Ageing Dev 126(12):1255–1261PubMedCrossRefGoogle Scholar
  22. 22.
    Plumb JA, Milroy R, Kaye SB (1989) Effects of the pH dependence of 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl-tetrazolium bromide-formazan absorption on chemosensitivity determined by a novel tetrazolium-based assay. Cancer Res 49(16):4435–4440PubMedGoogle Scholar
  23. 23.
    Asada M, Yamada T, Ichijo H, Delia D, Miyazono K, Fukumuro K, Mizutani S (1999) Apoptosis inhibitory activity of cytoplasmic p21(cip1/waf1) in monocytic differentiation. EMBO J 18(5):1223–1234PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2010

Authors and Affiliations

  • Jee-In Heo
    • 1
    • 2
  • Soo-Jin Oh
    • 1
  • Yoon-Jung Kho
    • 2
  • Jeong-Hyeon Kim
    • 1
  • Hong-Joon Kang
    • 1
  • Seong-Hoon Park
    • 3
  • Hyun-Seok Kim
    • 3
  • Jong-Yeon Shin
    • 4
  • Min-Ju Kim
    • 5
  • Sung Chan Kim
    • 1
  • Jae-Bong Park
    • 1
  • Jaebong Kim
    • 1
  • Jae-Yong Lee
    • 1
    • 2
    Email author
  1. 1.Department of Biochemistry, College of MedicineHallym UniversityGangwon-doRepublic of Korea
  2. 2.Institute of Natural Medicine, College of MedicineHallym UniversityGangwon-doRepublic of Korea
  3. 3.Molecular Radiation Oncology, Radiation Oncology BranchCenter for Cancer Research, NCI, NIHBethesdaUSA
  4. 4.Genomic Medicine Institute, Medical Research CenterSeoul National UniversitySeoulRepublic of Korea
  5. 5.Department of Anatomy and Neurobiology, College of MedicineHallym UniversityGangwon-doRepublic of Korea

Personalised recommendations