Molecular Biology Reports

, Volume 38, Issue 4, pp 2517–2528

β-Arrestins: multifunctional signaling adaptors in type 2 diabetes

Article

Abstract

β-Arrestins are not only well-known negative regulators of G protein-coupled receptor (GPCR) signaling, but also important adaptors in modulating the strength and duration of cellular signaling by scaffolding and interacting with a lot of cytoplasmic proteins. While β-arrestins are rather well described signal-mediated molecules, they are not generally associated with insulin signaling. But recent work has confirmed the difference from original thought. The current review aims to explore the emerging roles for β-arrestins in regulating insulin action, inflammatory signal pathway and other cellular signaling which are associated with type 2 diabetes.

Keywords

β-Arrestin Signal transduction Insulin resistance Lipotoxicity Type 2 diabetes 

References

  1. 1.
    Kuhn H (1978) Light-regulated binding of rhodopsin kinase and other proteins to cattle photoreceptor membranes. Biochemistry 17:4389–4395PubMedGoogle Scholar
  2. 2.
    Kuhn H, Hall SW, Wilden U (1984) Light-induced binding of 48-kDa protein to photoreceptor membranes is highly enhanced by phosphorylation of rhodopsin. FEBS Lett 176:473–478. doi:10.1016/0014-5793(84)81221-1 PubMedGoogle Scholar
  3. 3.
    Kingsmore SF, Peppel K, Suh D, Caron MG, Lefkowitz RJ, Seldin MF (1995) Genetic mapping of the beta-arrestin 1 and 2 genes on mouse chromosomes 7 and 11 respectively. Mamm Genome 6:306–307PubMedGoogle Scholar
  4. 4.
    Gurevich VV, Gurevich EV (2006) The structural basis of arrestin-mediated regulation of G protein coupled receptor. Pharmacol Ther 110:465–502. doi:10.1016/j.pharmthera.2005.09.008 PubMedGoogle Scholar
  5. 5.
    Claing A, Laporte SA, Caron MG, Lefkowitz RJ (2002) Endocytosis of G protein-coupled receptors: roles of G protein-coupled receptor kinases and beta-arrestin proteins. Prog Neurobiol 66:61–79. doi:10.1016/S0301-0082(01)00023-5 PubMedGoogle Scholar
  6. 6.
    Hupfeld CJ, Olefsky JM (2007) Regulation of receptor tyrosine kinase signaling by GRKs and beta-arrestins. Annu Rev Physiol 69:561–577. doi:10.1146/annurev.physiol.69.022405.154626 PubMedGoogle Scholar
  7. 7.
    Noma T, Lemaire A, Naga Prasad SV, Barki-Harrington L, Tilley DG, Chen J, Le Corvoisier P, Violin JD, Wei H, Lefkowitz RJ, Rockman HA (2007) beta-Arrestin-mediated beta(1)-adrenergic receptor transactivation of the EGFR confers cardioprotection. J Clin Invest 117:2445–2458. doi:10.1172/JCI31901 PubMedGoogle Scholar
  8. 8.
    Kovacs JJ, Hara MR, Davenport CL, Kim J, Lefkowitz RJ (2009) Arrestin development: emerging roles for β-arrestins in developmental signaling pathways. Dev Cell 17:443–458. doi:10.1016/j.devcel.2009.09.011 PubMedGoogle Scholar
  9. 9.
    Gao H, Sun Y, Wu Y, Luan B, Wang Y, Qu B, Pei G (2004) Identification of beta-arrestin2 as a G protein-coupled receptor-stimulated regulator of NF-kappaB pathways. Mol Cell 14:303–317. doi:10.1016/S1097-2765(04)00216-3 PubMedGoogle Scholar
  10. 10.
    Shoelson SE, Lee J, Yuan M (2003) Inflammation and the IKK beta/I kappa B/NF-kappa B axis in obesity- and diet-induced insulin resistance. Int J Obes Relat Metab Disord 27:S49–S52. doi:10.1038/sj.ijo.0802501 PubMedGoogle Scholar
  11. 11.
    Burgering BM, Coffer PJ (1995) Protein kinase B (c-Akt) in phosphatidylinositol-3-OH kinase signal transduction. Nature 376:599–602. doi:10.1038/376599a0 PubMedGoogle Scholar
  12. 12.
    Taniguchi CM, Emanuelli B, Kahn CR (2006) Critical nodes in signalling pathways: insights into insulin action. Nat Rev Cell Biol 7:86–96. doi:10.1038/nrm1837 Google Scholar
  13. 13.
    de Luca C, Olefsky JM (2008) Inflammation and insulin resistance. FEBS Lett 582:97–105. doi:10.1016/j.febslet.2007.11.057 PubMedGoogle Scholar
  14. 14.
    Barma P, Bhattacharya S, Bhattacharya A, Kundu R, Dasgupta S, Biswas A, Bhattacharya S, Roy SS, Bhattacharya S (2009) Lipid induced overexpression of NF-κB in skeletal muscle cells is linked to insulin resistance. Biochim Biophys Acta 1792:190–200. doi:10.1016/j.bbadis.2008.11.014 PubMedGoogle Scholar
  15. 15.
    Gurevich EV, Gurevich VV (2006) Arrestins: ubiquitous regulators of cellular signaling pathways. Genome Biol 7:236. doi:10.1186/gb-2006-7-9-236 PubMedGoogle Scholar
  16. 16.
    Granzin J, Wilden U, Choe HW, Labahn J, Krafft B, Büldt G (1998) X-ray crystal structure of arrestin from bovine rod outer segments. Nature 391:918–921. doi:10.1038/36147 PubMedGoogle Scholar
  17. 17.
    Han M, Gurevich VV, Vishnivetskiy SA, Sigler PB, Schubert C (2001) Crystal structure of beta-arrestin at 1.9 A: possible mechanism of receptor binding and membrane. Structure 9:869–880. doi:10.1015/s0969-2126(01)00644-x PubMedGoogle Scholar
  18. 18.
    Sutton RB, Vishnivetskiy SA, Robert J, Hanson SM, Raman D, Knox BE, Kono M, Navarro J, Gurevich VV (2005) Crystal structure of cone arrestin at 2.3 A: evolution of receptor specificity. J Mol Biol 354:1069–1080. doi:10.1016/j.jmb.2005.10.023 PubMedGoogle Scholar
  19. 19.
    Milano SK, Kim YM, Stefano FP, Benovic JL, Brenner C (2006) Nonvisual arrestin oligomerization and cellular localization are regulated by inositol hexakisphosphate binding. J Biol Chem 281:9812–9823. doi:10.1074/jbc.M512703200 PubMedGoogle Scholar
  20. 20.
    Milano SK, Pace HC, Kim YM, Brenner C, Benovic JL (2002) Scaffolding functions of arrestin-2 revealed by crystal structure and mutagenesis. Biochemistry 41:3321–3328. doi:10.1021/bi015905j PubMedGoogle Scholar
  21. 21.
    Nobles KN, Guan Z, Xiao K, Oas TG, Lefkowitz RJ (2007) The active conformation of beta-arrestin1: direct evidence for the phosphate sensor in the N-domain and conformational differences in the active states of beta-arrestins-1 and -2. J Biol Chem 282:21370–21381. doi:10.1074/jbc.M611483200 PubMedGoogle Scholar
  22. 22.
    Xiao K, Shenoy SK, Nobles K, Lefkowitz RJ (2004) Activation-dependent conformational changes in beta-arrestin 2. J Biol Chem 279:55744–55753. doi:10.1074/jbc.M409785200 PubMedGoogle Scholar
  23. 23.
    Hanson SM, Van Eps N, Francis DJ, Altenbach C, Vishnivetskiy SA, Arshavsky VY, Klug CS, Hubbell WL, Gurevich VV (2007) Structure and function of the visual arrestin oligomer. EMBO J 26:1726–1736. doi:10.1038/sj.emboj.7601614 PubMedGoogle Scholar
  24. 24.
    Imamoto Y, Tamura C, Kamikubo H, Kataoka M (2003) Concentration-dependent tetramerization of bovine visual arrestin. Biophys J 85:1186–1195. doi:10.1016/S0006-3495(03)74554-8 PubMedGoogle Scholar
  25. 25.
    Povsic TJ, Kohout TA, Lefkowitz RJ (2003) beta-Arrestin1 mediates insulin-like growth factor 1 (IGF-1) activation of phosphatidylinositol 3-kinase (PI3K) and anti-apoptosis. J Biol Chem 278:51334–51339. doi:10.1074/jbc.M309968200 PubMedGoogle Scholar
  26. 26.
    Zhande R, Mitchell JJ, Wu J, Sun XJ (2002) Molecular mechanism of insulin-induced degradation of insulin receptor substrate 1. Mol Cell Biol 22:1016–1026. doi:10.1128/MCB.22.4.1016-1026.2002 PubMedGoogle Scholar
  27. 27.
    Isao UI, Takeshi I, Jie H, Satoh H, Shenoy SK, Lefkowitz RJ, Hupfeld CJ, Olefsky JM (2004) β-Arrestin-1 competitively inhibits insulin-induced ubiquitination and degradation of insulin receptor substrate 1. Mol Cell Biol 24:8929–8937. doi:10.1128/MCB.24.20.8929-8937.2004 Google Scholar
  28. 28.
    Léon S, Haguenauer-Tsapis R (2009) Ubiquitin ligase adaptors: regulators of ubiquitylation and endocytosis of plasma membrane proteins. Exp Cell Res 315:1574–1583. doi:10.1016/j.yexcr.2008.11.014 PubMedGoogle Scholar
  29. 29.
    Kerscher O, Felberbaum R, Hochstrasser M (2006) Modification of proteins by ubiquitin and ubiquitin-like proteins. Annu Rev Cell Dev Biol 22:159–180. doi:10.1146/annurev.cellbio.22.010605.093503 PubMedGoogle Scholar
  30. 30.
    Fang S, Weissman AM (2004) A field guide to ubiquitylation. Cell Mol Life Sci 61:1546–1561. doi:10.1007/s00018-004-4129-5 PubMedGoogle Scholar
  31. 31.
    Li W, Ye Y (2008) Polyubiquitin: functions, structures, and mechanisms. Cell Mol Life Sci 65:2397–2406. doi:10.1007/s00018-008-8090-6 PubMedGoogle Scholar
  32. 32.
    Li X, Baillie GS, Houslay MD (2009) Mdm2 directs the ubiquitination of beta-arrestin-sequestered cAMP phosphodiesterase-4D5. J Biol Chem 284:16170–16182. doi:10.1074/jbc.M109.008078 PubMedGoogle Scholar
  33. 33.
    Wang P, Gao H, Ni Y, Wang B, Ji L, Qin L, Ma L, Pei G (2003) beta-Arrestin 2 functions as a G-protein-coupled receptor-activated regulator of oncoprotein Mdm2. J Biol Chem 278:6363–6370. doi:10.1074/jbc.M210350200 PubMedGoogle Scholar
  34. 34.
    Bhandari D, Trejo J, Benovic JL, Marchese A (2007) Arrestin-2 interacts with the ubiquitin-protein isopeptide ligase atrophin-interacting protein 4 and mediates endosomal sorting of the chemokine receptor CXCR4. J Biol Chem 282:36971–36979. doi:10.1074/jbc.M705085200 PubMedGoogle Scholar
  35. 35.
    Shenoy SK, Lefkowitz RJ (2003) Trafficking patterns of beta-arrestin and G protein-coupled receptors determined by the kinetics of beta-arrestin deubiquitination. J Biol Chem 278:14498–14506. doi:10.1074/jbc.M209626200 PubMedGoogle Scholar
  36. 36.
    Lefkowitz RJ, Rajagopal K, Whaien EJ (2006) New roles for β-arrestins in cell signaling: not just for seven-transmembrane receptor. Mol Cell 24:643–652. doi:10.1016/j.molcel.2006.11.007 PubMedGoogle Scholar
  37. 37.
    Wang P, Wu Y, Ge X, Ma L, Pei G (2003) Subcellular localization of beta-arrestins is determined by their intact N domain and the nuclear export signal at the C terminus. J Biol Chem 278:11648–11653. doi:10.1074/jbc.M208109200 PubMedGoogle Scholar
  38. 38.
    Dalle S, Ricketts W, Imamura T, Vollenweider P, Olefsky JM (2001) Insulin and insulin-like growth factor I receptors utilize different G protein signaling components. J Biol Chem 276:15688–15695. doi:10.1074/jbc.M010884200 PubMedGoogle Scholar
  39. 39.
    Luan B, Zhao J, Wu H, Duan B, Shu GW, Wang XY, Li D, Jia W, Kang J, Pei G (2009) Deficiency of a β-arrestin-2 signal complex contributes to insulin resistance. Nature 457:1146–1150. doi:10.1038/nature07617 PubMedGoogle Scholar
  40. 40.
    Ahn S, Shenoy SK, Wei H, Lefkowitz RJ (2004) Differential kinetic and spatial patterns of beta-arrestin and G protein-mediated ERK activation by the angiotensin II receptor. J Biol Chem 279:35518–35525. doi:10.1074/jbc.M405878200 PubMedGoogle Scholar
  41. 41.
    Guo C, Whitmarsh AJ (2008) The beta-arrestin-2 scaffold protein promotes c-Jun N-terminal kinase-3 activation by binding to its nonconserved N terminus. J Biol Chem 283:15903–15911. doi:10.1074/jbc.M710006200 PubMedGoogle Scholar
  42. 42.
    Ahn S, Kim J, Hara MR, Ren XR, Lefkowitz RJ (2009) β-Arrestin-2 mediates anti-apoptotic signaling through regulation of BAD phosphorylation. J Biol Chem 284:8855–8865. doi:10.1074/jbc.M808463200 PubMedGoogle Scholar
  43. 43.
    Wehbi V, Tranchant T, Durand G, Musnier A, Decourtye J, Piketty V, Butnev VY, Bousfield GR, Crépieux P, Maurel MC, Reiter E (2010) Partially deglycosylated equine LH preferentially activates beta-arrestin-dependent signaling at the follicle-stimulating hormone receptor. Mol Endocrinol 24:561–573. doi:10.1210/me.2009-0347 PubMedGoogle Scholar
  44. 44.
    Imamura T, Huang J, Dalle S, Ugi S, Usui I, Luttrell LM, Miller WE, Lefkowitz RJ, Olefsky JM (2001) beta-Arrestin-mediated recruitment of the Src family kinase Yes mediates endothelin-1-stimulated glucose transport. J Biol Chem 276:43663–43667. doi:10.1074/jbc.M105364200 PubMedGoogle Scholar
  45. 45.
    Jiang T, Qiu Y (2003) Interaction between Src and a C-terminal proline-rich motif of Akt is required for Akt activation. J Biol Chem 278:15789–15793. doi:10.1074/jbc.M212525200 PubMedGoogle Scholar
  46. 46.
    Beaulieu JM, Sotnikova TD, Marion S, Lefkowitz RJ, Gainetdinov RR, Caron MG (2005) An Akt/β-arrestin 2/PP2A signaling complex mediates dopaminergic neurotransmission and behavior. Cell 122:261–273. doi:10.1016/j.cell.2005.05.012 PubMedGoogle Scholar
  47. 47.
    Beaulieu JM, Marion S, Rodriguiz RM, Medvedev IO, Sotnikova TD, Ghisi V, Wetsel WC, Lefkowitz RJ, Gainetdinov RR, Caron MG (2008) A β-arrestin 2 signaling complex mediates lithium action on behavior. Cell 132:125–136. doi:10.1016/j.cell.2007.11.041 PubMedGoogle Scholar
  48. 48.
    Lodeiro M, Theodorpoulou M, Pardo M, Casanueva FF, Camiña JP (2009) c-Src regulates Akt signaling in response to ghrelin via beta-arrestin signaling-independent and -dependent mechanisms. PLoS ONE 4:e4686. doi:10.1371/journal.pone.0004686 PubMedGoogle Scholar
  49. 49.
    Stöckli J, James DE (2009) Insulin action under arrestin. Cell Metab 9:213–214. doi:10.1016/j.cmet.2009.02.005 PubMedGoogle Scholar
  50. 50.
    Rodgers JT, Puigserver P (2009) Insulin resistance: β-arrestin development. Cell Res 19:275–276. doi:10.1038/cr.2009.22 PubMedGoogle Scholar
  51. 51.
    Lee DF, Kuo HP, Chen CT, Wei Y, Chou CK, Hung JY, Yen CJ, Hung MC (2008) IKKβ suppression of TSC1 function links the mTOR pathway with insulin resistance. Int J Mol Med 22:633–638. doi:10.3892/ijmm_00000065 PubMedGoogle Scholar
  52. 52.
    Cai D, Yuan M, Frantz DF, Melendez PA, Hansen L, Lee J, Shoelson SE (2005) Local and systemic insulin resistance resulting from hepatic activation of IKK-β and NF-κB. Nat Med 11:183–190. doi:10.1038/nm1166 PubMedGoogle Scholar
  53. 53.
    Yuan M, Konstantopoulos N, Lee J, Hansen L, Li ZW, Karin M, Shoelson SE (2001) Reversal of obesity- and diet-induced insulin resistance with salicylates or targeted disruption of Ikkβ. Science 293:1673–1677. doi:10.1126/science.1061620 PubMedGoogle Scholar
  54. 54.
    Moon MK, Kim M, Chung SS, Lee HJ, Koh SH, Svovoda P, Jung MH, Cho YM, Park YJ, Choi SH, Jang HC, Park KS, Lee HK (2010) S-adenosyl-L-methionine ameliorates TNFalpha-induced insulin resistance in 3T3-L1 adipocytes. Exp Mol Med 42:345–352. doi:10.3858/emm.2010.42.5.036 PubMedGoogle Scholar
  55. 55.
    Lou SY, Liu Y, Chen WH, Ying J, He YM, Wang WJ (2008) Pollen Typhae total flavones inhibit expression of interleukin-6 in C2C12 skeletal muscle cells cultured with palmitate. Zhong Xi Yi Jie He Xue Bao 6:488–492. doi:10.3736/jcim20080511 PubMedGoogle Scholar
  56. 56.
    Junqueira AS, Romêo FJ, Junqueira CDL (2009) Evaluation of the degree of vascular inflammation in patients with metabolic syndrome. Arq Bras Cardiol 93:360–366, 353–359. doi:10.1590/S0066-782X2009001000008 Google Scholar
  57. 57.
    Klover PJ, Senn JJ, Nowak IA, Zimmers TA, Koniaris LG, Furlanetto RW, Mooney RA (2003) Suppressor of cytokine signaling-3 (SOCS-3), a potential mediator of interleukin-6-dependent insulin resistance in hepatocytes. J Biol Chem 178:13740–13746. doi:10.1074/jbc.M210689200 Google Scholar
  58. 58.
    Jové M, Planavila A, Laguna JC, Vázquez-Carrera M (2005) Palmitate-induced interleukin 6 production is mediated by protein kinase C and nuclear-factor kappaB activation and leads to glucose transporter 4 down-regulation in skeletal muscle cells. Endocrinology 146:3087–3095. doi:10.1210/en.2004-1560 PubMedGoogle Scholar
  59. 59.
    Ko WC, Liu TP, Cheng JT, Tzeng TF, Liu IM (2006) Effect of opioid μ-receptors activation on insulin signals damaged by tumor necrosis factor α in myoblast C2C12 cells. Neurosci Lett 397:274–278. doi:10.1016/j.neulet.2005.12.047 PubMedGoogle Scholar
  60. 60.
    Witherow DS, Garrison TR, Miller WE, Lefkowitz RJ (2004) beta-Arrestin inhibits NF-κB activity by means of its interaction with the NF-κB inhibitor IκBα. Proc Natl Acad Sci USA 101:8603–8607. doi:10.1073/pnas.0402851101 PubMedGoogle Scholar
  61. 61.
    Mythreye K, Blobe GC (2009) The type III TGF-beta receptor regulates epithelial and cancer cell migration through beta-arrestin2-mediated activation of Cdc42. Proc Natl Acad Sci USA 106:8221–8226. doi:10.1073/pnas.0812879106 PubMedGoogle Scholar
  62. 62.
    You HJ, How T, Blobe GC (2009) The type III transforming growth factor-beta receptor negatively regulates nuclear factor kappa B signaling through its interaction with beta-arrestin2. Carcinogenesis 30:1281–1287. doi:10.1093/carcin/bgp071 PubMedGoogle Scholar
  63. 63.
    Fan HK, Luttrell LM, Tempel GE, Senn JJ, Halushka PV, Cook JA (2007) β-Arrestins 1 and 2 differentially regulate LPS-induced signaling and pro-inflammatory gene expression. Mol Immunol 44:3092–3099. doi:10.1016/j.molimm.2007.02.009 PubMedGoogle Scholar
  64. 64.
    Wang W, Xu M, Zhang YY, He B (2009) Fenoterol, a β2-adrenoceptor agonist, inhibits LPS-induced membrane-bound CD14, TLR4/CD14 complex, and inflammatory cytokines production through β-arrestin-2 in THP-1 cell line. Acta Pharmacol Sin 30:1522–1528. doi:10.1038/aps.2009.153 PubMedGoogle Scholar
  65. 65.
    Basher F, Fan H, Zingarelli B, Borg KT, Luttrell LM, Tempel GE, Halushka PV, Cook JA (2008) β-Arrestin 2: a negative regulator of inflammatory responses in polymorphonuclear leukocytes. Int J Clin Exp Med 1:32–41. doi:10.1016/j.cell.2007.11.041 PubMedGoogle Scholar
  66. 66.
    Luan B, Zhang ZN, Wu YL, Kang J, Pei G (2005) beta-Arrestin2 functions as a phosphorylation-regulated suppressor of UV-induced NF-kappaB activation. EMBO J 24:4237–4246. doi:10.1038/sj.emboj.7600882 PubMedGoogle Scholar
  67. 67.
    Wang Y, Tang Y, Teng L, Wu Y, Zhao X, Pei G (2006) Association of beta-arrestin and TRAF6 negatively regulates Toll-like receptor-interleukin 1 receptor signaling. Nat Immun 7:139–147. doi:10.1038/ni1294 Google Scholar
  68. 68.
    Seregin SS, Appledorn DM, Patial S, Bujold M, Nance W, Godbehere S, Parameswaran N, Amalfitano A (2010) beta-Arrestins modulate adenovirus-vector-induced innate immune responses: differential regulation by beta-arrestin-1 and beta-arrestin-2. Virus Res 147:123–134. doi:10.1016/j.virusres.2009.10.023 PubMedGoogle Scholar
  69. 69.
    Broca C, Quoyer J, Costes S, Linck N, Varrault A, Deffayet PM, Bockaert J, Dalle S, Bertrand G (2009) beta-Arrestin 1 is required for PAC1 receptor-mediated potentiation of long-lasting ERK1/2 activation by glucose in pancreatic beta-cells. J Biol Chem 284:4332–4342. doi:10.1074/jbc.M807595200 PubMedGoogle Scholar
  70. 70.
    Sonoda N, Imamura T, Yoshizaki T, Babendure JL, Lu JC, Olefsky JM (2008) β-Arrestin-1 mediates glucagon-like peptide-1 signaling to insulin secretion in cultured pancreatic β cells. Proc Nat Acad Sci USA 105:6614–6619. doi:10.1073/pnas.0710402105 PubMedGoogle Scholar
  71. 71.
    Holz GG (2004) Epac: a new cAMP-binding protein in support of glucagon-likepeptide-1 receptor-mediated signal transduction in the pancreatic beta-cell. Diabetes 53:5–13. doi:10.2337/diabetes.53.1.5 PubMedGoogle Scholar
  72. 72.
    Burcelin R, Cani PD, Knauf C (2007) Glucagon-like peptide-1 and energy homeostasis. J Nutr 137:2534S–2538SPubMedGoogle Scholar
  73. 73.
    Jorgensen R, Kubale V, Vrecl M, Schwartz TW, Elling CE (2007) Oxyntomodulin differentially affects glucagon-like peptide-1 receptor beta-arrestin recruitment and signaling through Galpha(s). J Pharmacol Exp Ther 322:148–154. doi:10.1124/jpet.107.120006 PubMedGoogle Scholar
  74. 74.
    Doyle ME, Egan JM (2007) Mechanisms of action of glucagon-like peptide 1 in the pancreas. Pharmacol Ther 113:546–593. doi:10.1016/j.pharmthera.2006.11.007 PubMedGoogle Scholar
  75. 75.
    Park S, Dong X, Fisher TL, Dunn S, Omer AK, Weir G, White MF (2006) Exendin-4 uses Irs2 signaling to mediate pancreatic beta cell growth and function. J Biol Chem 281:1159–1168. doi:10.1074/jbc.M508307200 PubMedGoogle Scholar
  76. 76.
    Quoyer J, Longuet C, Broca C, Linck N, Costes S, Varin E, Bockaert J, Bertrand G, Dalle S (2010) GLP-1 mediates antiapototic effect by phosphorylating Bad through a beta-arrestin 1-mediated ERK1/2 activation in pancreatic beta-cell. J Biol Chem 285:1989–2002. doi:10.1074/jbc.M109.067207 PubMedGoogle Scholar
  77. 77.
    Portela-Gomes GM, Lukinius A, Ljungberg O, Efendic S, Ahrén B, Abdel-Halim SM (2003) PACAP is expressed in secretory granules of insulin and glucagon cells in human and rodent pancreas. Evidence for generation of cAMP compartments uncoupled from hormone release in diabetic islets. Regul Pept 113:31–39. doi:10.1016/S0167-0115(02)00295-1 PubMedGoogle Scholar
  78. 78.
    Yamamoto K, Hashimoto H, Tomimoto S, Shintani N, Miyazaki J, Tashiro F, Aihara H, Nammo T, Li M, Yamagata Y, Miyagawa JI, Matsuzawa Y, Kawabata Y, Fukuyama Y, Koga K, Mori W, Tanaka K, Matsuda T, Baba A (2003) Overexpression of PACAP in transgenic mouse pancreatic beta-cells enhances insulin secretion and ameliorates streptozotocin-induced diabetes. Diabetes 52:1155–1162. doi:10.2337/diabetes.52.5.1155 PubMedGoogle Scholar
  79. 79.
    Dresner A, Laurent D, Marcucci M, Griffin ME, Dufour S, Cline GW, Slezak LA, Andersen DK, Hundal RS, Rothman DL, Petersen KF, Shulman GI (1999) Effects of free fatty acids on glucose transport and IRS-1-associated phosphatidylinositol 3-kinase activity. J Clin Invest 103:253–259. doi:10.1172/JCI5001 PubMedGoogle Scholar
  80. 80.
    Kashyap SR, Belfort R, Berria R, Suraamornkul S, Pratipranawatr T, Finlayson J, Barrentine A, Bajaj M, Mandarino L, DeFronzo R, Cusi K (2004) Discordant effects of a chronic physiological increase in plasma FFA on insulin signaling in healthy subjects with or without a family history of type 2 diabetes. Am J Physiol Endocrinol Metab 287:E537–E546. doi:10.1152/ajpendo.00541.2003 PubMedGoogle Scholar
  81. 81.
    Haus JM, Solomon TP, Marchetti CM, Edmison JM, González F, Kirwan JP (2010) Free fatty acid-induced hepatic insulin resistance is attenuated following lifestyle intervention in obese individuals with impaired glucose tolerance. J Clin Endocrinol Metab 95:323–327. doi:10.1210/jc.2009-1101 PubMedGoogle Scholar
  82. 82.
    Kashyap S, Belfort R, Gastaldelli A, Pratipanawatr T, Berria R, Pratipanawatr W, Bajaj M, Mandarino L, DeFronzo R, Cusi K (2003) A sustained increase in plasma free fatty acids impairs insulin secretion in non-diabetic subjects genetically predisposed to develop type 2 diabetes. Diabetes 52:2461–2474. doi:10.2337/diabetes.52.10.2461 PubMedGoogle Scholar
  83. 83.
    Chavez JA, Summers SA (2003) Characterizing the effects of saturated fatty acids on insulin signaling and ceramide and diacylglycerol accumulation in 3T3-L1 adipocytes and C2C12 myotubes. Arch Biochem Biophys 419:101–109. doi:10.1016/j.abb.2003.08.020 PubMedGoogle Scholar
  84. 84.
    Nakamura S, Takamura T, Matsuzawa-Nagata N, Takayama H, Misu H, Noda H, Nabemoto S, Kurita S, Ota T, Ando H, Miyamoto K, Kaneko S (2009) Palmitate induces insulin resistance in H4IIEC3 hepatocytes through reactive oxygen species produced by mitochondria. J Biol Chem 284:14809–14818. doi:10.1074/jbc.M901488200 PubMedGoogle Scholar
  85. 85.
    Preitner F, Mody N, Graham TE, Peroni OD, Kahn BB (2009) Long-term Fenretinide treatment prevents high-fat diet-induced obesity, insulin resistance, and hepatic steatosis. Am J Physiol Endorinol Metab 297:E1420–E1429. doi:10.1152/ajpendo.00362.20090193-1849/09 Google Scholar
  86. 86.
    Ehses JA, Meier DT, Wueest S, Rytka J, Boller S, Wielinga PY, Schraenen A, Lemaire K, Debray S, Van Lommel L, Pospisilik JA, Tschopp O, Schultze SM, Malipiero U, Esterbauer H, Ellingsgaard H, Rütti S, Schuit FC, Lutz TA, Böni-Schnetzler M, Konrad D, Donath MY (2010) Toll-like receptor 2-deficient mice are protected from insulin resistance and beta cell dysfunction induced by a high-fat diet. Diabetologia 53:1795–1806. doi:10.1007/s00125-010-1747-3 PubMedGoogle Scholar
  87. 87.
    Senn JJ (2006) Toll-like receptor-2 is essential for the development of palmitate-induced insulin resistance in myotubes. J Biol Chem 281:26865–26875. doi:10.1074/jbc.M513304200 PubMedGoogle Scholar
  88. 88.
    Ragheb R, Shanab GM, Medhat AM, Seoudi DM, Adeli K, Fantus IG (2009) Free fatty acid-induced muscle insulin resistance and glucose uptake dysfunction: evidence for PKC activation and oxidative stress-activated signaling pathways. Biochem Biophys Res Commun 389:211–216. doi:10.1016/j.bbrc.2009.08.106 PubMedGoogle Scholar
  89. 89.
    Belfort R, Mandarino L, Kashyap S, Wirfel K, Pratipanawatr T, Berria R, Defronzo RA, Cusi K (2005) Dose response effect of elevated plasma FFA on insulin signaling. Diabetes 54:1640–1648. doi:10.2337/diabetes.54.6.1640 PubMedGoogle Scholar
  90. 90.
    Griffin ME, Marcucci MJ, Cline GW, Bell K, Barucci N, Lee D, Goodyear LJ, Kraegen EW, White MF, Shulman GI (1999) Free fatty acid-induced insulin resistance is associated with activation of protein kinase C theta and alterations in the insulin signaling cascade. Diabetes 48:1270–1274. doi:10.2337/diabetes.48.6.1270 PubMedGoogle Scholar
  91. 91.
    Timmers S, Schrauwen P, de Vogel J (2008) Muscular diacylglycerol metabolism and insulin resistance. Physiol Behav 94:242–251. doi:10.1016/j.physbeh.2007.12.002 PubMedGoogle Scholar
  92. 92.
    Erion DM, Shulman GI (2010) Diacylglycerol-mediated insulin resistance. Nat Med 16:400–402. doi:10.1038/nm0410-400 PubMedGoogle Scholar
  93. 93.
    Morino K, Petersen KF, Dufour S, Befroy D, Frattini J, Shatzkes N, Neschen S, White MF, Bilz S, Sono S, Pypaert M, Shulman GI (2005) Reduced mitochondrial density and increased IRS-1 serine phosphorylation in muscle of insulin-resistant offspring of type 2 diabetic parents. J Clin Invest 115:3587–3593. doi:10.1172/JCI25151 PubMedGoogle Scholar
  94. 94.
    Stratford S, Hoehn KL, Liu F, Summers SA (2004) Regulation of insulin action by ceramide dual mechanisms linking ceramide accumulation to the inhibition of Akt/protein kinase B. J Biol Chem 279:36608–36615. doi:10.1074/jbc.M406499200 PubMedGoogle Scholar
  95. 95.
    Haus JM, Kashyap SR, Kasumov T, Zhang R, Kelly KR, Defronzo RA, Kirwan JP (2009) Plasma ceramides are elevated in obese subjects with type 2 diabetes and correlate with the severity of insulin resistance. Diabetes 58:337–343. doi:10.2337/db08-1228 PubMedGoogle Scholar
  96. 96.
    Coen PM, Dubé JJ, Amati F, Stefanovic-Racic M, Ferrell RE, Toledo FG, Goodpaster BH (2010) Insulin resistance is associated with higher intramyocellular triglycerides in type I but not type II myocytes concomitant with higher ceramide content. Diabetes 59:80–88. doi:10.2337/db09-0988 PubMedGoogle Scholar
  97. 97.
    Schnell S, Schaefer M, Schöfl C (2007) Free fatty acids increase cytosolic free calcium and stimulate insulin secretion from β-cells through activation of GPR40. Mol Cell Endocrinol 263:173–180. doi:10.1016/j.mice.2006.09.013 PubMedGoogle Scholar
  98. 98.
    Ritz-Laser B, Meda P, Constant I, Klages N, Charollais A, Morales A, Magnan C, Ktorza A, Philippe J (1999) Glucose-induced preproinsulin gene expression is inhibited by the free fatty acid palmitate. Endocrinology 140:4005–4014. doi:10.1210/en.140.9.4005 PubMedGoogle Scholar
  99. 99.
    Gwiazda KS, Yang TL, Lin Y, Johnson JD (2009) Effects of palmitate on ER and cytosolic Ca2+ homeostasis in β-cells. Am J Physiol Endocrinol Metab 296:E690–E701. doi:10.1152/ajpendo.90525.2008 PubMedGoogle Scholar
  100. 100.
    Nakata M, Shintani N, Hashimoto H, Baba A, Yada T (2010) Intra-islet PACAP protects pancreatic beta-cells against glucotoxicity and lipotoxicity. J Mol Neurosci. doi:10.1007/s12031-010-9383-4
  101. 101.
    Branstrom R, Leibiger IB, Leibiger B, Corkey BE, Berggren PO, Larsson O (1998) Long chain coenzyme A esters activate the pore-forming subunit (Kir6.2) of the ATP-regulated potassium channel. J Biol Chem 273:31395–31400. doi:10.1074/jbc.273.47.31395 PubMedGoogle Scholar
  102. 102.
    Liang Y, Buettger C, Berner DK, Matschinsky FM (1997) Chronic effect of fatty acids on insulin release is not through the alteration of glucose metabolism in a pancreatic beta-cell line (beta HC9). Diabetologia 40:1018–1027. doi:10.1007/s001250050783 PubMedGoogle Scholar
  103. 103.
    Abderrahmani A, Niederhauser G, Favre D, Abdelli S, Ferdaoussi M, Yang JY, Regazzi R, Widmann C, Waeber G (2007) Human high-density lipoprotein particles prevent activation of the JNK pathway induced by human oxidised low-density lipoprotein particles in pancreatic beta cells. Diabetologia 50:1304–1314. doi:10.1007/s00125-007-0642-z PubMedGoogle Scholar
  104. 104.
    Okazaki Y, Eto K, Yamashita T, Okamoto M, Ohsugi M, Noda M, Terauchi Y, Ueki K, Kadowaki T (2010) Decreased insulin secretion and accumulation of triglyceride in beta cells overexpressing a dominant-negative form of AMP-activated protein kinase. Endocr J 57:141–152. doi:10.1507/endocrj.K09E-284 PubMedGoogle Scholar
  105. 105.
    Ehses JA, Ellingsgaard H, Boni-Schnetzler M, Donath MY (2009) Pancreatic islet inflammation in type 2 diabetes: from alpha and beta cell compensation to dysfunction. Arch Physiol Biochem 115:240–247. doi:10.1080/13813450903025879 PubMedGoogle Scholar
  106. 106.
    Kawamata Y, Imamura T, Babendure JL, Lu JC, Yoshizaki T, Olefsky JM (2007) Tumor necrosis factor receptor-1 can function through a Gαq/11-arrestin-1 signaling complex. J Biol Chem 282:28549–28556. doi:10.1074/jbc.M705869200 PubMedGoogle Scholar
  107. 107.
    Jiang B, Yang Y, Jin H, Shang W, Zhou L, Qian L, Chen M (2008) Astragaloside IV attenuates lipolysis and improves insulin resistance induced by TNFα in 3T3-L1 adipocytes. Phytother Res 22:1434–1439. doi:10.1002/ptr.2434 PubMedGoogle Scholar
  108. 108.
    Wu JH, Peppel K, Nelson CD, Lin FT, Kohout TA, Miller WE, Exum ST, Freedman NJ (2003) The adaptor protein β-arrestin 2 enhances endocytosis of low density lipoprotein receptor. J Biol Chem 278:44238–44245. doi:10.1074/jbc.M309450200 PubMedGoogle Scholar
  109. 109.
    Nelson CD, Perry SJ, Regier DS, Prescott SM, Topham MK, Lefkowitz RJ (2007) Targeting of diacylglycerol degradation to M1 muscarinic receptors by beta-arrestins. Science 315:663–666. doi:10.1126/science.1134562 PubMedGoogle Scholar
  110. 110.
    Zhao M, Wimmer A, Trieu K, Discipio RG, Schraufstatter IU (2004) Arrestin regulates MAPK activation and prevents NADPH oxidase-dependent death of cells expressing CXCR2. J Biol Chem 279:49259–49267. doi:10.1074/jbc.M405118200 PubMedGoogle Scholar
  111. 111.
    Zhang Z, Hao J, Zhao Z, Ben P, Fang F, Shi L, Gao Y, Liu J, Wen C, Luo L, Yin Z (2009) beta-Arrestins facilitate ubiquitin-dependent degradation of apoptosis signal-regulating kinase 1 (ASK1) and attenuate H2O2-induced apoptosis. Cell Signal 21:1195–1206. doi:10.1016/j.cellsig.2009.03.010 PubMedGoogle Scholar
  112. 112.
    Conner DA, Mathier MA, Mortensen RM, Christe M, Vatner SF, Seidman CE, Seidman JG (1997) beta-Arrestin 1 knockout mice appear normal but demonstrate altered cardiac responses to beta-adrenergic stimulation. Circ Res 81:1021–1026PubMedGoogle Scholar
  113. 113.
    Bohn LM, Lefkowitz RJ, Gainetdinov RR, Peppel K, Caron MG, Lin FT (1999) Enhanced morphine analgesia in mice beta-arrestin 2. Science 286:2495–2498. doi:10.1126/science.286.5449.2495 PubMedGoogle Scholar
  114. 114.
    Kohout TA, Lin FS, Perry SJ, Conner DA, Lefkowitz RJ (2001) β-Arrestin 1 and β-arrestin 2 differentially regulate heptahelical receptor signaling and trafficking. Proc Natl Acad Sci USA 98:1601–1606. doi:10.1073/pnas.041608198 PubMedGoogle Scholar
  115. 115.
    Sun J, Lin X (2008) beta-Arrestin 2 is required for lysophosphatidic acid-induced NF-κB activation. Proc Natl Acad Sci USA 105:17085–17090. doi:10.1073/pnas.0802701105 PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2010

Authors and Affiliations

  1. 1.Institute of Chinese Integrative Medicine, Huashan HospitalFudan UniversityShanghaiChina
  2. 2.Institute of Integrated Medicine in Clinic, Shanghai Academy of Traditional Chinese Medicine, Yueyang Integrative Medicine HospitalShanghai Traditional Chinese Medicine UniversityShanghaiChina

Personalised recommendations