Molecular Biology Reports

, Volume 38, Issue 4, pp 2285–2293 | Cite as

Evolutionary dynamics of spliceosomal intron revealed by in silico analyses of the P-Type ATPase superfamily genes

  • Toshiyuki OdaEmail author
  • Ryosuke L. Ohniwa
  • Yuki Suzuki
  • Masatsugu Denawa
  • Masahiro Kumeta
  • Hideyuki Okamura
  • Kunio Takeyasu


It has been long debated whether spliceosomal introns originated in the common ancestor of eukaryotes and prokaryotes. In this study, we tested the possibility that extant introns were inherited from the common ancestor of eukaryotes and prokaryotes using in silico simulation. We first identified 21 intron positions that are shared among different families of the P-Type ATPase superfamily, some of which are known to have diverged before the separation of prokaryotes and eukaryotes. Theoretical estimates of the expected number of intron positions shared by different genes suggest that the introns at those 21 positions were inserted independently. There seems to be no intron that arose from before the diversification of the P-Type ATPase superfamily. Namely, the present introns were inserted after the separation of eukaryotes and prokaryotes.


Spliceosomal intron Introns-late theory Introns-early theory Simulation Proto-splice site P-Type ATPase 

Supplementary material

11033_2010_360_MOESM1_ESM.fas (2.5 mb)
Supplemental Data 1 Alignment of amino acids used in this study. Amino acids given in upper-case letters were used under the strict rule, while under the generous rule, amino acids given in upper- and lower-case letters, except for “x”, were used. The letter “x” represents amino acids which were not used in any calculations. (FAS 2540 kb)
11033_2010_360_MOESM2_ESM.xls (114 kb)
Supplemental Table 1 Positions of introns found in the P-Type ATPase genes and the names of genes which have introns at these positions. The first column indicates positions of nucleotides before the introns, and the second column indicates positions of nucleotides after the introns. The third and subsequent columns indicate the names of genes. (XLS 114 kb)


  1. 1.
    Kersanach R, Brinkmann H, Liaud M, Zhang D, Martin W, Cerff R (1994) Five identical intron positions in ancient duplicated genes of eubacterial origin. Nature 367:387–389PubMedCrossRefGoogle Scholar
  2. 2.
    de Roos A (2007) Conserved intron positions in ancient protein modules. Biol Direct 2:7PubMedCrossRefGoogle Scholar
  3. 3.
    Rogozin I, Wolf Y, Sorokin A, Mirkin B, Koonin E (2003) Remarkable interkingdom conservation of intron positions and massive, lineage-specific intron loss and gain in eukaryotic evolution. Curr Biol 13:1512–1517PubMedCrossRefGoogle Scholar
  4. 4.
    Nguyen H, Yoshihama M, Kenmochi N (2005) New maximum likelihood estimators for eukaryotic intron evolution. PLoS Comput Biol 1:e79PubMedCrossRefGoogle Scholar
  5. 5.
    Rzhetsky A, Ayala F, Hsu L, Chang C, Yoshida A (1997) Exon/intron structure of aldehyde dehydrogenase genes supports the “introns-late” theory. Proc Natl Acad Sci USA 94:6820–6825PubMedCrossRefGoogle Scholar
  6. 6.
    de Souza S (2003) The emergence of a synthetic theory of intron evolution. Genetica 118:117–121PubMedCrossRefGoogle Scholar
  7. 7.
    Sverdlov A, Csuros M, Rogozin I, Koonin E (2007) A glimpse of a putative pre-intron phase of eukaryotic evolution. Trends Genet 23:105–108PubMedCrossRefGoogle Scholar
  8. 8.
    Iwabe N, Kuma K, Kishino H, Hasegawa M, Miyata T (1990) Compartmentalized isozyme genes and the origin of introns. J Mol Evol 31:205–210PubMedCrossRefGoogle Scholar
  9. 9.
    Axelsen K, Palmgren M (1998) Evolution of substrate specificities in the P-type ATPase superfamily. J Mol Evol 46:84–101PubMedCrossRefGoogle Scholar
  10. 10.
    Okamura H, Denawa M, Ohniwa R, Takeyasu K (2003) P-type ATPase superfamily: evidence for critical roles for kingdom evolution. Ann N Y Acad Sci 986:219–223PubMedCrossRefGoogle Scholar
  11. 11.
    Benson D, Karsch-Mizrachi I, Lipman D, Ostell J, Wheeler D (2007) GenBank. Nucleic Acids Res 35:D21–D25PubMedCrossRefGoogle Scholar
  12. 12.
    Pruitt K, Tatusova T, Maglott D (2007) NCBI reference sequences (RefSeq): a curated non-redundant sequence database of genomes, transcripts and proteins. Nucleic Acids Res 35:D61–D65PubMedCrossRefGoogle Scholar
  13. 13.
    Katoh K, Misawa K, Kuma K, Miyata T (2002) MAFFT: a novel method for rapid multiple sequence alignment based on fast Fourier transform. Nucleic Acids Res 30:3059–3066PubMedCrossRefGoogle Scholar
  14. 14.
    Felsenstein J (1989) PHYLIP—phylogeny inference package (Version 3.2). Cladistics 5:164–166Google Scholar
  15. 15.
    Vingron M, Sibbald P (1993) Weighting in sequence space: a comparison of methods in terms of generalized sequences. Proc Natl Acad Sci USA 90:8777–8781PubMedCrossRefGoogle Scholar
  16. 16.
    Higgins D, Thompson J, Gibson T (1996) Using CLUSTAL for multiple sequence alignments. Methods Enzymol 266:383–402PubMedCrossRefGoogle Scholar
  17. 17.
    Cho G, Doolittle R (1997) Intron distribution in ancient paralogs supports random insertion and not random loss. J Mol Evol 44:573–584PubMedCrossRefGoogle Scholar
  18. 18.
    Roy S, Gilbert W (2005) Rates of intron loss and gain: implications for early eukaryotic evolution. Proc Natl Acad Sci USA 102:5773–5778PubMedCrossRefGoogle Scholar
  19. 19.
    Dibb N, Newman A (1989) Evidence that introns arose at proto-splice sites. EMBO J 8:2015–2021PubMedGoogle Scholar
  20. 20.
    Tomita M, Shimizu N, Brutlag D (1996) Introns and reading frames: correlation between splicing sites and their codon positions. Mol Biol Evol 13:1219–1223PubMedGoogle Scholar
  21. 21.
    Long M, de Souza S, Rosenberg C, Gilbert W (1998) Relationship between “proto-splice sites” and intron phases: evidence from dicodon analysis. Proc Natl Acad Sci USA 95:219–223PubMedCrossRefGoogle Scholar
  22. 22.
    Endo T, Fedorov A, de Souza S, Gilbert W (2002) Do introns favor or avoid regions of amino acid conservation? Mol Biol Evol 19:252–521Google Scholar
  23. 23.
    Roy S, Nosaka M, de Souza S, Gilbert W (1999) Centripetal modules and ancient introns. Gene 238:85–91PubMedCrossRefGoogle Scholar
  24. 24.
    Kaessmann H, Zollner S, Nekrutenko A, Li W (2002) Signatures of domain shuffling in the human genome. Genome Res 12:1642–1650PubMedCrossRefGoogle Scholar
  25. 25.
    Long M, Deutsch M (1999) Association of intron phases with conservation at splice site sequences and evolution of spliceosomal introns. Mol Biol Evol 16:1528–1534PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2010

Authors and Affiliations

  • Toshiyuki Oda
    • 1
    Email author
  • Ryosuke L. Ohniwa
    • 2
  • Yuki Suzuki
    • 1
  • Masatsugu Denawa
    • 1
  • Masahiro Kumeta
    • 1
  • Hideyuki Okamura
    • 3
  • Kunio Takeyasu
    • 1
  1. 1.Laboratory of Plasma Membrane and Nuclear Signaling, Graduate School of BiostudiesKyoto UniversityKyotoJapan
  2. 2.Institute of Basic Medical Sciences, Graduate School of Comprehensive Human SciencesUniversity of TsukubaTsukubaJapan
  3. 3.Department of BiologyOsaka Dental UniversityHirakataJapan

Personalised recommendations