Molecular Biology Reports

, Volume 38, Issue 4, pp 2225–2232 | Cite as

Genetic variation and phylogenetic relationship between two species of yellow catfish, Horabagrus brachysoma and H. nigricollaris (Teleostei: Horabagridae) based on RAPD and microsatellite markers

  • P. M. Abdul Muneer
  • A. Gopalakrishnan
  • Remya Shivanandan
  • V. S. Basheer
  • A. G. Ponniah


The two species of yellow catfish, Horabagrus brachysoma and H. nigricollaris are categorized as ‘endangered’ and ‘critically endangered’ respectively in their wild habitat. Proper knowledge of genetic structure and variability of these endangered species are highly essential for the management, conservation and improvement of fish stocks. Therefore, genetic variation and phylogenetic relationships between these species of yellow catfish sampled from Chalakkudy River in the hot spot of biodiversity-Western Ghats region, Kerala, India were analyzed by using Random amplified polymorphic DNA (RAPD) and microsatellite markers. 85 RAPD and five microsatellites loci were detected to analyze the genetic variation and phylogenetic relationships among these species. Out of 85 RAPD loci produced only 52.94% were polymorphic whereas in microsatellite, all 5 loci were polymorphic (100%). Species-specific RAPD bands were found in both species studied. In microsatellite, the number of alleles across the five loci ranged from 1 to 8. The observed heterozygosities in H. brachysoma and H. nigricollaris were 0.463 and 0.443, respectively. Here, both RAPD and microsatellite methods reported a low degree of gene diversity and lack of genetic heterogeneity in both species of Horabagrus which strongly emphasize the need of fishery management, conservation and rehabilitation of these species.


Horabagrus Phylogeny RAPD Genetic variation Microsatellites Polymorphism 



Indian Council of Agricultural Research–National Agricultural Technology Project (ICAR–NATP), which supported this study financially, is gratefully acknowledged. The authors are grateful to Dr. S.P. Singh (PI, NATP, NBFGR) for encouragement, support and guidance.


  1. 1.
    Pethiyagoda R, Kottelat M (1994) Three new species of fishes of the genera Osteochilichthys, Travancoria and Horabagrus from the Chalakudy River, Kerala, India. J South Asian Nat Hist 1:97–116Google Scholar
  2. 2.
    Talwar PK, Jhingram AG (1991) Inland fishes of India and adjacent countries, vol 1. AA Balkema, RotterdamGoogle Scholar
  3. 3.
    de Pinna MCC (1993) Higher-level Phylogeny of Siluriformes (Teleostei, Ostariophysi), with a new classification of the order. PhD Thesis. University of New York, New YorkGoogle Scholar
  4. 4.
    Hardman M (2005) The phylogenetic relationships among non-diplomystid catfishes as inferred from mitochondrial cytochrome b sequences; the search for the ictalurid sister taxon (Otophysi: Siluriformes). Mol Phylogenet Evol 37:700–720PubMedCrossRefGoogle Scholar
  5. 5.
    Sullivan JP, Lundberg JG, Hardman M (2006) A phylogenetic analysis of the major groups of catfishes (Teleostei: Siluriformes) using rag1 and rag2 nuclear gene sequences. Mol Phylogenet Evol 41:636–662PubMedCrossRefGoogle Scholar
  6. 6.
    Muneer PM (2006) Molecular genetic characterization of endemic yellow catfish, Horabagrus brachysoma (Gunther). PhD Thesis. Cochin University of Science and Technology, Cochin, p 225Google Scholar
  7. 7.
    Muneer PM, Gopalakrishnan A, Musammilu KK, Mohindra V, Lal KK, Basheer VS, Lakra WS (2009) Genetic variation and population structure of endemic yellow catfish, Horabagrus brachysoma (Bagridae) among three populations of Western Ghat region using RAPD and microsatellite markers. Mol Biol Rep 36:1779–1791PubMedCrossRefGoogle Scholar
  8. 8.
    Ponniah AG, Gopalakrishnan A (2000) Endemic fish diversity of the Western Ghats. National Bureau of Fish Genetic Resources, NBFGR NATP Publication 1, LucknowGoogle Scholar
  9. 9.
    Menon AGK (1999) Check list —fresh water fishes of India, Rec. Zool. Surv. India, Occas pap no 175, p 366Google Scholar
  10. 10.
    Muneer PM, Gopalakrishnan A, Lal KK, Mohindra V (2007) Population genetic structure of endemic and endangered yellow catfish, Horabagrus brachysoma, using allozyme markers. Biochem Genet 45:637–645PubMedCrossRefGoogle Scholar
  11. 11.
    Prasad G, Anvar Ali PH, Raghavan R (2008) Threatened fishes of the world: Horabagrus nigricollaris (Pethiyagoda and Kottelat, 1994) (Bagridae). Environ Biol Fish 82:109–110CrossRefGoogle Scholar
  12. 12.
    CAMP (1998) Conservation Assessment and Management Plan (CAMP) for freshwater fishes of India 1997, Zoo Outreach Organization (ZOO) and National Bureau of Fish Genetic Resources (NBFGR), LucknowGoogle Scholar
  13. 13.
    Muneer PM, Gopalakrishnan A, Basheer VS, Lakra WS (2008) Identification of RAPD markers in endemic yellow catfish, Horabagrus brachysoma (Gunther, 1864). Asian Fish Sci 21:293–304Google Scholar
  14. 14.
    Shivanandan R (2004) Genetic profile of endangered and endemic yellow catfish. Horabagrus nigricollaris using RAPD and Microsatellite markers. MSc Dissertation. Periyar University, Tamil Nadu, India, p 69Google Scholar
  15. 15.
    Welsh J, McClelland M (1990) Fingerprinting genomes using PCR with arbitrary primers. Nucl Acids Res 18:7213–7218PubMedCrossRefGoogle Scholar
  16. 16.
    Williams JG, Kubelik AR, Livak KJ, Rafalski JA, Tingey SV (1990) DNA polymorphisms amplified by arbitrary primers are useful as genetic markers. Nucl Acids Res 18:6531–6535PubMedCrossRefGoogle Scholar
  17. 17.
    Clark AG, Lanigan CM (1993) Prospects for estimating nucleotide divergence with RAPDs. Mol Biol Evol 10:1096–1111PubMedGoogle Scholar
  18. 18.
    Bardakci F, Skibinski DO (1994) Application of the RAPD technique in tilapia fish: species and subspecies identification. Heredity 73:117–123PubMedCrossRefGoogle Scholar
  19. 19.
    Borowsky R, Wilkens H (2002) Mapping a cave fish genome: polygenic systems and regressive evolution. J Hered 93:19–21PubMedCrossRefGoogle Scholar
  20. 20.
    Callejas C, Ochando MD (2002) Phylogenetic relationships among Spanish Barbus species (Pisces, Cyprinidae) shown by RAPD markers. Heredity 89:36–43PubMedCrossRefGoogle Scholar
  21. 21.
    Klinbunga S, Boonyapakdee A, Pratoomchat B (2000) Genetic diversity and Species-diagnostic markers of Mud Crabs (Genus Scylla) in Eastern Thailand Determined by RAPD Analysis. Mar Biotechnol (NY) 2:180–187Google Scholar
  22. 22.
    Khedkar GD, Reddy AC, Mann P, Ravinder K, Muzumdar K (2009) Clarias batrachus (Linn.1758) population is lacking genetic diversity in India. Mol Biol Rep 37:1355–1362PubMedCrossRefGoogle Scholar
  23. 23.
    Shifat R, Begum A, Khan H (2003) Use of RAPD fingerprinting for discriminating two populations of Hilsa shad (Tenualosa ilisha Ham.) from inland rivers of Bangladesh. J Biochem Mol Biol 36:462–467PubMedGoogle Scholar
  24. 24.
    Saini A, Dua A, Mohindra V, Lakra WS (2010) Molecular discrimination of six species of Bagrid catfishes from Indus river system using randomly amplified polymorphic DNA markers. Mol Biol Rep. doi: 10.1007/s11033-010-9960-1
  25. 25.
    Liu Z, Tan G, Li P, Dunham RA (1999) Transcribed dinucleotide microsatellites and their associated genes from channel catfish Ictalurus punctatus. Biochem Biophys Res Commun 259:190–194PubMedCrossRefGoogle Scholar
  26. 26.
    Liu ZJ, Li P, Argue B, Dunham RA (1998) Inheritance of RAPD markers in channel catfish (Ictalurus punctatus), blue catfish (I. furcatus) and their F1, F2 and backcross hybrids. Anim Genet 29:58–62CrossRefGoogle Scholar
  27. 27.
    Kovacs B, Egedi S, Bartfai R, Orban L (2000) Male-specific DNA markers from African catfish (Clarias gariepinus). Genetica 110:267–276PubMedCrossRefGoogle Scholar
  28. 28.
    Tautz D (1989) Hypervariability of simple sequences as a general source for polymorphic DNA markers. Nucl Acids Res 17:6463–6471PubMedCrossRefGoogle Scholar
  29. 29.
    Zardoya R, Vollmer DM, Craddock C, Streelman JT, Karl S, Meyer A (1996) Evolutionary conservation of microsatellite flanking regions and their use in resolving the phylogeny of cichlid fishes (Pisces: Perciformes). Proc Biol Sci 263:1589–1598PubMedCrossRefGoogle Scholar
  30. 30.
    Kato M, Yoshida M (1995) Nucleotide sequence of a highly repetitive element isolated from Opsariichthys uncirostris (Osteichthyes). O uncirostris repetitive sequence. Mol Biol Rep 21:85–86PubMedCrossRefGoogle Scholar
  31. 31.
    Knapik EW, Goodman A, Ekker M, Chevrette M, Delgado J, Neuhauss S, Shimoda N, Driever W, Fishman MC, Jacob HJ (1998) A microsatellite genetic linkage map for zebrafish (Danio rerio). Nat Genet 18:338–343PubMedCrossRefGoogle Scholar
  32. 32.
    Elmesiry GE, Okai S, Hokabe S, Minoshima S, Sugiyama S, Yoshino T, Ohtani T, Shimizu N, Kato M (2005) Isolation and characterization of simple repeat sequences from the yellow fin sea bream Acanthopagrus latus (Sparidae). Mol Biol Rep 32:117–126PubMedCrossRefGoogle Scholar
  33. 33.
    Primmer CR, Veselov AJ, Zubchenko A, Poututkin A, Bakhmet I, Koskinen MT (2006) Isolation by distance within a river system: genetic population structuring of Atlantic salmon, Salmo salar, in tributaries of the Varzuga River in northwest Russia. Mol Ecol 15:653–666PubMedCrossRefGoogle Scholar
  34. 34.
    Hatanaka T, Henrique-Silva F, Galetti P M Jr (2006) Population substructuring in a migratory freshwater fish Prochilodus argenteus (Characiformes, Prochilodontidae) from the Sao Francisco River. Genetica 126:153–159PubMedCrossRefGoogle Scholar
  35. 35.
    Galbusera P, Van S, Matthysen E (2000) Cross-species amplicifcation of microsatellite primers in passerine birds. Conserv Genet 1:163–168CrossRefGoogle Scholar
  36. 36.
    Volckaert FAM, Helleman BAS, Pouyaud L (1999) Nine polymorphic microsatellite markers in the South East Asian Catfishes Pangasius hypophthalmus and Clarias batrachus. Anim Genet 30:383CrossRefGoogle Scholar
  37. 37.
    Taggart JB, Hynes RA, Prodohl PA, Ferguson A (1992) A simplified protocol for routine total DNA isolation from salmonid fishes. J Fish Biol 40:963–965CrossRefGoogle Scholar
  38. 38.
    Yeh FC Yang RC, Boyle T (1999) POPGENE 32 —version 1.31. Population genetics softwareGoogle Scholar
  39. 39.
    Na-Nakorn U, Taniguchi N, Nugroho E, Seki S, Kamonrat W (1999) Isolation and characterization of microsatellite loci of Clarias macrocephalus and their application to genetic diversity study. Fish Sci 65:520–526Google Scholar
  40. 40.
    Galbusera P, Volckaert FA, Hellemans B, Ollevier F (1996) Isolation and characterization of microsatellite markers in the African catfish Clarias gariepinus (Burchell, 1822). Mol Ecol 5:703–705PubMedCrossRefGoogle Scholar
  41. 41.
    Van Oosterhout C, Hutchinson WF, Wills DPM, Shipley P (2004) MICRO-CHECKER: software for identifying and correcting genotying errors in microsatellite data. Mol Ecol Notes 4:535–538CrossRefGoogle Scholar
  42. 42.
    Nei M (1987) Molecular evolutionary genetics. Columbia University Press, New YorkGoogle Scholar
  43. 43.
    Nei M (1978) Estimation of Average Heterozygosity and Genetic Distance from a Small Number of Individuals. Genetics 89:583–590PubMedGoogle Scholar
  44. 44.
    Usmani S, Tan SG, Siraj SS, Yusoff K (2003) Population structure of the Southeast Asian river catfish Mystus nemurus. Anim Genet 34:462–464PubMedCrossRefGoogle Scholar
  45. 45.
    Jackson TR, Ferguson MM, Danzmann RG, Fishback AG, Ihssen PE, O’Connel M, Crease TJ (1998) Identification of two QTL influencing upper temperature tolerance in three rainbow trout (Oncorhynchus mykiss) half-sib families. Heredity 80:143–151CrossRefGoogle Scholar
  46. 46.
    Chistiakov DA, Hellemans B, Volckaert FAM (2006) Microsatellites and their genomic distribution, evolution, function and applications: A review with special reference to fish genetics. Aquaculture 255:1–29CrossRefGoogle Scholar
  47. 47.
    Araneda C, Neira R, Iturra P (2005) Identification of a dominant SCAR marker associated with colour traits in Coho salmon (Oncorhynchus kisutch). Aquaculture 247:67–73CrossRefGoogle Scholar
  48. 48.
    Si-Fa L, Shou-Jie T, Wan-Qi C (2010) RAPD-SCAR markers for genetically improved NEW GIFT Nile Tilapia (Oreochromis niloticus niloticus L.) and their application in strain identification. Zool Res 31:147–153CrossRefGoogle Scholar
  49. 49.
    Kauffman EJ, Gestl EE, Kim DJ, Walker C, Hite JM, Yan G, Rogan PK, Johnson SL, Cheng KC (1995) Microsatellite-centromere mapping in the zebrafish (Danio rerio). Genomics 30:337–341PubMedCrossRefGoogle Scholar
  50. 50.
    Lee W-J, Kocher TD (1996) Microsatellite DNA markers for edited genetic mapping in the tilapia, Oreochromis niloticus. J Fish Biol 49:169–171Google Scholar
  51. 51.
    Waldbieser GC, Bosworth BG, Nonneman DJ, Wolters WR (2001) A microsatellite-based genetic linkage map for channel catfish, Ictalurus punctatus. Genetics 158:727–734PubMedGoogle Scholar
  52. 52.
    Perry GM, Ferguson MM, Sakamoto T, Danzmann RG (2005) Sex-linked quantitative trait loci for thermotolerance and length in the rainbow trout. J Hered 96:97–107PubMedCrossRefGoogle Scholar
  53. 53.
    Kocher TD, Lee WJ, Sobolewska H, Penman D, McAndrew B (1998) A genetic linkage map of a cichlid fish, the tilapia (Oreochromis niloticus). Genetics 148:1225–1232PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2010

Authors and Affiliations

  • P. M. Abdul Muneer
    • 1
    • 3
  • A. Gopalakrishnan
    • 1
  • Remya Shivanandan
    • 1
  • V. S. Basheer
    • 1
  • A. G. Ponniah
    • 2
  1. 1.National Bureau of Fish Genetic Resources (NBFGR) Cochin Unit, CMFRI CampusCochinIndia
  2. 2.Central Institute of Brackish water Aquaculture (CIBA)ChennaiIndia
  3. 3.Neurovascular Oxidative Injury Laboratory, Department of Pharmacology and Experimental NeuroscienceUniversity of Nebraska Medical CenterOmahaUSA

Personalised recommendations