Molecular Biology Reports

, Volume 38, Issue 3, pp 1567–1574 | Cite as

Tamarix hispida metallothionein-like ThMT3, a reactive oxygen species scavenger, increases tolerance against Cd2+, Zn2+, Cu2+, and NaCl in transgenic yeast

  • Jingli Yang
  • Yucheng Wang
  • Guifeng Liu
  • Chuanping Yang
  • Chenghao Li
Article

Abstract

A metallothionein-like gene, ThMT3, encoding a type 3 metallothionein, was isolated from a Tamarix hispida leaf cDNA library. Expression analysis revealed that mRNA of ThMT3 was upregulated by high salinity as well as by heavy metal ions, and that ThMT3 was predominantly expressed in the leaf. Transgenic yeast (Saccharomyces cerevisiae) expressing ThMT3 showed increased tolerance to Cd2+, Zn2+, Cu2+, and NaCl stress. Transgenic yeast also accumulated more Cd2+, Zn2+, and NaCl, but not Cu2+. Analysis of the expression of four genes (GLR1, GTT2, GSH1, and YCF1) that aid in transporting heavy metal (Cd2+) from the cytoplasm to the vacuole demonstrated that none of these genes were induced under Cd2+, Zn2+, Cu2+, and NaCl stress in ThMT3-transgenic yeast. H2O2 levels in transgenic yeast under such stress conditions were less than half those in control yeast under the same conditions. Three antioxidant genes (SOD1, CAT1, and GPX1) were specifically expressed under Cd2+, Zn2+, Cu2+, and NaCl stress in the transgenic yeast. Cd2+, Zn2+, and Cu2+ increased the expression levels of SOD1, CAT1, and GPX1, respectively, whereas NaCl induced the expression of SOD1 and GPX1.

Keywords

Saccharomyces cerevisiae Metallothionein Abiotic stress ROS Vacuolar transport Heavy metal 

Notes

Acknowledgments

This work was supported by the Fundamental Research Funds for the Central Universities (DL09CA12), National Project of plant transformation research and application (2009ZX08009-098B) and National Natural Science Foundation of China (No. 30671701).

Supplementary material

11033_2010_265_MOESM1_ESM.pdf (41 kb)
Supplementary material 1 (PDF 41 kb)

References

  1. 1.
    Palmiter RD (1998) The elusive function of metallothioneins. Proc Natl Acad Sci USA 95:8428–8430PubMedCrossRefGoogle Scholar
  2. 2.
    Cobbett C, Goldsbrough P (2002) Phytochelatins and metallothioneins: roles in heavy metal detoxification and homeostasis. Annu Rev Plant Biol 53:159–182PubMedCrossRefGoogle Scholar
  3. 3.
    Song WY, Sohn EJ, Martinoia E, Lee YJ, Yang YY, Jasinski M, Forestier C, Hwang I, Lee Y (2003) Engineering tolerance and accumulation of lead and cadmium in transgenic plants. Nature Biotechnol 21:914–919CrossRefGoogle Scholar
  4. 4.
    Guo WJ, Meetam M, Goldsbrough PB (2008) Examining the specific contributions of individual Arabidopsis metallothioneins to copper distribution and metal tolerance. Plant Biologists 146:1697–1706Google Scholar
  5. 5.
    Hassien VH, Tuomainen M, Peräniemi S, Schat H, Kärenlampi SO, Tervahauta AI (2009) Metallothioneins 2 and 3 contribute to the metal-adapted phenotype but are not directly linked to Zn accumulation in the metal hyperaccumulator. Thlaspi caerulescens J Exp Bot 60:187–196CrossRefGoogle Scholar
  6. 6.
    Zhao Y, Wu YR, Li Y, Ling HQ, Chu CC (2009) OsMT1a, a type 1 metallothionein, plays the pivotal role in zinc homeostasis and drought tolerance in rice. Plant Mol Biol 70:219–229CrossRefGoogle Scholar
  7. 7.
    Jin S, Cheng Y, Guan Q, Liu D, Takano T, Liu S (2006) A metallothionein-like protein of rice (rgMT) functions in E. coli and its gene expression is induced by abiotic stresses. Biotechnol Lett 28:1749–1753PubMedCrossRefGoogle Scholar
  8. 8.
    Wisniewski M, Bassett C, Norelli J, Macarisin D, Artlip T, Gasic K, Korban S (2008) Expressed sequence tag analysis of the response of apple (Malus_domestica ‘RoyalGala’) to low temperature and water deficit. Physiol Plant 133:298–317PubMedCrossRefGoogle Scholar
  9. 9.
    Evans KM, Gatehouse JA, Lindsay WP, Shi J, Tommey AM, Robinson NJ (1992) Expression of the pea metallothionein-like gene PsMTA in Escherichia coli and Arabidopsis thaliana and analysis of trace metal ion accumulation: implications for PsMTA function. Plant Mol Biol 20:1019–1028PubMedCrossRefGoogle Scholar
  10. 10.
    Rhonda CF, Liang ZM, Karam BS (1997) Analysis of type 1 metallothionein cDNAs in Vicia faba. Plant Mol Biol 33:583–591CrossRefGoogle Scholar
  11. 11.
    Murphy A, Zhou J, Goldsbrough PB, Taiz L (1997) Purification and immunological identification of metallothioneins 1 and 2 from Arabidopsis thaliana. Plant Physiol 113:1293–1301PubMedCrossRefGoogle Scholar
  12. 12.
    Adamis PDB, Panek AD, Eleutherio ECA (2007) Vacuolar compartmentation of the cadmium–glutathione complex protects Saccharomyces cerevisiae from mutagenesis. Toxicol Lett 173:1–7PubMedCrossRefGoogle Scholar
  13. 13.
    Li Z, Lu Y, Zhen R, Szczypka M, Thiele DJ, Rea PA (1997) A new pathway for vacuolar cadmium sequestration in Saccharomyces cerevisiae: YCF1-catalyzed transport of bis (glutathionato) cadmium. Proc Natl Acad Sci USA 94:42–47PubMedCrossRefGoogle Scholar
  14. 14.
    Beattie JH, Owen HLH, Wallace SM, Arthur JR, Kwun IS, Hawksworth GM, Wallace HM (2005) Metallothionein overexpression and resistance to toxic stress. Toxicol Lett 157:69–78PubMedCrossRefGoogle Scholar
  15. 15.
    Guo J, Wang MH (2009) Characterization of the phenylalanine ammonia–lyase gene (SlPAL5) from tomato (Solanum lycopersicum L.). Mol Biol Rep 36:1579–1585PubMedCrossRefGoogle Scholar
  16. 16.
    Rakwal R, Yang GX, Komatsu S (2004) Chitinase induced by jasmonic acid, methyl jasmonate, ethylene, and protein phosphatase inhibitors in rice. Mol Biol Rep 31:113–119PubMedCrossRefGoogle Scholar
  17. 17.
    Jin H, Sun Y, Yang QC, Chao YH, Kang JM, Jin H, Li Y, Margaret G (2010) Screening of genes induced by salt stress from Alfalfa. Mol Biol Rep 37:745–753. doi: 10.1007/s11033-009-9590-7 PubMedCrossRefGoogle Scholar
  18. 18.
    Akashi K, Nishimura N, Ishida Y, Yokota A (2004) Potent hydroxyl radical-scavenging activity of drought-induced type-2 metallothionein in wild watermelon. Biochem Biophys Res Commun 323:72–78PubMedCrossRefGoogle Scholar
  19. 19.
    Liu JH, Zhang YM, Huang DJ, Song G (2005) Cadmium induced MTs synthesis via oxidative stress in yeast Saccharomyces cerevisiae. Mol Cell Biochem 280:139–145PubMedCrossRefGoogle Scholar
  20. 20.
    Koh M, Kim HJ (2001) The effect of metallothionein on the activity of enzymes involved in removal of reactive oxygen species. Bull Korean Chem Soc 22:362–366Google Scholar
  21. 21.
    Xue TT, Li XZ, Zhu W, Wu C, Yang GD, Zheng CC (2009) Cotton metallothionein GhMT3a, a reactive oxygen species scavenger, increased tolerance against abiotic stress in transgenic tobacco and yeast. J Exp Bot 60:339–349PubMedCrossRefGoogle Scholar
  22. 22.
    Gao CQ, Wang YC, Liu GF, Yang CP, Jiang J, Li HY (2008) Expression profiling of salinity-alkali stress responses by large-scale expressed sequence tag analysis in Tamarix hispida. Plant Mol Biol 66:245–258PubMedCrossRefGoogle Scholar
  23. 23.
    Jaakola L, Pirttila AM, Halonen M, Hohtola A (2001) Isolation of high quality RNA from bilberry (Vaccinium myrtillus L.) fruit. Mol Biotechnol 19:201–213PubMedCrossRefGoogle Scholar
  24. 24.
    Lehr A, Kirsch M, Viereck R, Schiemann J, Rausch T (1999) cDNA and genomic cloning of sugar beet V-type H+-ATPase subunit A and c isoforms: evidence for coordinate expression during plant development and coordinate induction in response to high salinity. Plant Mol Biol 39:463–475PubMedCrossRefGoogle Scholar
  25. 25.
    Geitz DR, Schiestl RH, Willems AR, Woods RA (1995) Studies on the transformation of intact yeast cells by the LiAc/SS-DNA/PEG procedure. Yeast 11:355–360CrossRefGoogle Scholar
  26. 26.
    Adamis PDB, Panek AD, Leite SGF, Eleutherio ECA (2003) Factors involved with cadmium absorption by a wild-type strain of Saccharomyces cerevisiae. Braz J Microbiol 34:55–60CrossRefGoogle Scholar
  27. 27.
    Ferguson IB, Watkins CB, Harman JE (1983) Inhibition by calcium of senescence of detached cucumber cotyledons: effect on ethylene and hydroperoxide production. Plant Physiol 71:182–186PubMedCrossRefGoogle Scholar
  28. 28.
    Suharsono U, Fujisawa Y, Kawasaki T, Iwasaki Y, Satoh H, Shimamoto K (2002) The heterotrimeric G protein alpha subunit acts upstream of the small GTPase Rac in disease resistance of rice. Proc Natl Acad Sci USA 99:13307–13312PubMedCrossRefGoogle Scholar
  29. 29.
    Domenech J, Mir G, Huguet G, Capdevila M, Molinas M, Atrian S (2005) Plant metallothionein domains: functional insight into physiological metal binding and protein folding. Biochimie 88:583–593PubMedCrossRefGoogle Scholar
  30. 30.
    Brkljǎcíc JM, Samardžíc JT, Timotijevíc GS, Maksimovíc VR (2004) Expression analysis of buckwheat (Fagopyrum esculentum Moench) Metallothionein-like gene (MT3) under different stress and physiological conditions. J Plant Physiol 161:741–746PubMedCrossRefGoogle Scholar
  31. 31.
    Huang J, Sun SJ, Xu DQ, Yang X, Bao YM, Wang ZF, Tang HJ, Zhang HS (2009) Increased tolerance of rice to cold, drought and oxidative stresses mediated by the overexpression of a gene that encodes the zinc finger protein ZFP245. Biochem Biophy Res Commun 389:556–561CrossRefGoogle Scholar
  32. 32.
    Pulla RK, Lee OR, In JG, Parvin S, Kim YJ, Shim JS, Sun H, Kim YJ, Senthil K, Yang DC (2010) Identification and characterization of class I chitinase in Panax ginseng C. A. Meyer. Mol Biol Rep. doi: 10.1007/s11033-010-0082-6 Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2010

Authors and Affiliations

  • Jingli Yang
    • 1
  • Yucheng Wang
    • 1
  • Guifeng Liu
    • 1
  • Chuanping Yang
    • 1
  • Chenghao Li
    • 1
  1. 1.Key Laboratory of Forest Improvement and Biotechnology, Ministry of Education, Northeast Forestry UniversityHarbinPeople’s Republic of China

Personalised recommendations