Molecular Biology Reports

, Volume 38, Issue 2, pp 1383–1388 | Cite as

Cross species amplification ability of novel microsatellites isolated from Jatropha curcas and genetic relationship with sister taxa

Cross species amplification and genetic relationship of Jatropha using novel microsatellites
  • Pamidimarri D. V. N. Sudheer
  • Shaik G. Mastan
  • Hifzur Rahman
  • Ch. Ravi Prakash
  • Sweta Singh
  • Muppala P. Reddy
Article

Abstract

The present investigation was undertaken with an aim to check the ability of cross species amplification of microsatellite markers isolated from Jatropha curcas—a renewable source of biodiesel to deduce the generic relationship with its six sister taxa (J. glandulifera, J. gossypifolia, J. integerrima, J. multifida, J. podagrica, and J. tanjorensis). Out of the 49 markers checked 31 markers showed cross species amplification in all the species studied. JCDS-30, JCDS-69, JCDS-26, JCMS-13 and JCMS-21 amplified in J. curcas. However, these markers did not show any cross species amplification. Overall percentage of polymorphism (PP) among the species studied was 38% and the mean genetic similarity (GS) was found to be 0.86. The highest PP (24) and least GS (0.76) was found between J. curcas/J. podagrica and J. curcas/J. multifida and least PP (4.44) and highest GS (0.96) was found between J. integerrima/J. tanjorensis. Dendrogram analysis showed good congruence to RAPD and AFLP than nrDNA ITS data reported earlier. The characterized microsatellites will pave way for intraspecies molecular characterization which can be further utilized in species differentiation, molecular identification, characterization of interspecific hybrids, exploitation of genetic resource management and genetic improvement of the species through marker assisted breeding for economically important traits.

Keywords

Cross species amplification Genetic relationship Jatropha curcas and microsatellites 

Supplementary material

11033_2010_241_MOESM1_ESM.docx (28 kb)
Supplementary material 1 (28 KB)

References

  1. 1.
    Fairless D (2007) Biofuel: the little shrub that could—maybe. Nature 449:652–655CrossRefPubMedGoogle Scholar
  2. 2.
    Sudheer PDVN, Nirali P, Reddy MP, Radhakrishnan T (2009) Comparative study of interspecific genetic divergence and phylogenic analysis of genus Jatropha by RAPD and AFLP. Mol Biol Rep 36:901–990CrossRefGoogle Scholar
  3. 3.
    Sudheer PDVN, Balaji C, Reddy MP (2009) Genetic diversity and phylogenetic analysis of genus Jatropha based on nrDNA ITS sequence. Mol Biol Rep 36:1929–1935CrossRefGoogle Scholar
  4. 4.
    Sunita K, Kochar VK, Singh SP, Katiyar RS, Pushpangadan P (2005) Differential rooting and sprouting behaviour of two Jatropha species and associated physiological and biochemical, changes. Curr Sci 89:936–939Google Scholar
  5. 5.
    Olapeju OA, Kayode A, Olusegun E, James BG (2007) Antibacterial diterpenoids from Jatropha podagrica Hook. Phytochemistry 68:2420–2425CrossRefGoogle Scholar
  6. 6.
    Prabakaran AJ, Sujatha M (1999) Jatropha tanjorensis Ellis and Saroja, a natural interspecific hybrid occurring in Tamil Nadu, India. Gene Res Crop Evol 46:213–218CrossRefGoogle Scholar
  7. 7.
    Yotam L, Yaniv S, Haim B, Menachem S, Emile H (2000) Rare Jatropha multifida intoxication in two children. J Emerg Med 19:173–175CrossRefGoogle Scholar
  8. 8.
    Taofeeq O, Ganiyu OA, Tesleem AO, Godwin OA, Mutiyat AO (2005) Mechanism of action of Jatropha gossypifolia stem latex as a haemostatic agent. Eur J Gen Med 2(4):140–143Google Scholar
  9. 9.
    Ramchandani M, Jolly CI (1988) Pharmacognostical and phytochemical studies on Phyllanthus fraternus webster and Jatropha glandulifera ROXB. Indian J Pharm Sci 50:276–277Google Scholar
  10. 10.
    Litt M, Luty JA (1989) A hypervariable microsatellite revealed by in vitro amplification of a dinucleotide repeat within the cardiac muscle actin gene. Am J Hum Genet 44:397–401PubMedGoogle Scholar
  11. 11.
    Weber JL, May PE (1989) Abundant class of human DNA polymorphisms which can be typed using polymerase chain reaction. Am J Hum Genet 44:388–396PubMedGoogle Scholar
  12. 12.
    Dib C, Faure S, Fizames C, Samson D, Drouot N, Vignal A, Millasseau P, Marc S, Hazan J, Seboun E, Lathrop M, Gyapay G, Morissette J, Weissenbach J (1996) A comprehensive genetic map of the human genome based on 5,264 microsatellites. Nature 380:152–154CrossRefPubMedGoogle Scholar
  13. 13.
    Dietrich WF, Miller J, Steen R, Merchant MA, Damronboles D, Husain Z, Dredge R, Daly MJ, Ingalls KA, O’Connor TJ, Evans CA, DeAngelis MM, Levinson DM, Kruglyak L, Goodman N, Copeland NG, Jenkins NA, Hawkins TL, Stein L, Page DC, Lander ES (1996) A comprehensive genetic map of the mouse genome. Nature 380:149–152CrossRefPubMedGoogle Scholar
  14. 14.
    Schuler GD, Boguski MS, Stewart EA (1996) A gene map of the human genome. Science 274:540–546CrossRefPubMedGoogle Scholar
  15. 15.
    Knapik EW, Goodman A, Ekker M (1998) A microsatellite genetic linkage map for zebrafish (Danio rerio). Nat Genet 18:338–343CrossRefPubMedGoogle Scholar
  16. 16.
    Jarne P, Lagoda PJL (1996) Microsatellites, from molecules to populations and back. Trends Evol Ecol 11:424–429CrossRefGoogle Scholar
  17. 17.
    Powell W, Morgante M, Andre C (1996) The comparison of RFLP, RAPD, AFLP and SSR (microsatellite) markers for germplasm analysis. Mol Breed 2:119–122CrossRefGoogle Scholar
  18. 18.
    Basha SD, Sujatha M (2007) Inter and intra-population variability of J. curcas (L.) characterized by RAPD and ISSR markers and development of population-specific SCAR markers. Euphytica 56:375–386CrossRefGoogle Scholar
  19. 19.
    Tatikonda L, Suhas PW, Seetha K, Naresh B, Thakur KS, David AH, Prathibha D, Rajeev KV (2008) AFLP-based molecular characterization of an elite germplasm collection of Jatropha curcas L., a biofuel plant. Plant Sci 176(4):505–513CrossRefGoogle Scholar
  20. 20.
    Qin X, Gao F, Zhang J, Gao J, Lin S, Wang Y, Jiang L, Liao Y, Wang L, Jia Y, Tang L, Xu Y, Chen F (2010) Molecular cloning, characterization and expression of cDNA encoding translationally controlled tumor protein (TCTP) from Jatropha curcas L. Mol Biol Rep 36(7). doi:10.1007/s11033-008-9369-2
  21. 21.
    Liu B, Yao L, Wang W, Gao J, Chen F, Wang S, Xu Y, Tang L, Jia Y (2010) Molecular cloning and characterization of phospholipase D from Jatropha curcas. Mol Biol Rep 37(2):939–946CrossRefPubMedGoogle Scholar
  22. 22.
    Sudheer PDVN, Mastan SG, Rahman H, Reddy MP (2009) Molecular characterization and genetic diversity analysis of Jatropha curcas L. in India using RAPD and AFLP analysis. Mol Biol Rep 37(5). doi:10.1007/s11033-009-9712-2
  23. 23.
    Senthil Kumar R, Parthiban KT, Govinda Rao M (2009) Molecular characterization of Jatropha genetic resources through inter-simple sequence repeat (ISSR) markers. Mol Biol Rep 36(7):1951–1956CrossRefPubMedGoogle Scholar
  24. 24.
    Sudheer PDVN, Singh S, Mastan SG, Patel J, Reddy MP (2009) Molecular characterization and identification of markers for toxic and non-toxic varieties of Jatropha curcas L. using RAPD, AFLP and SSR markers. Mol Biol Rep 36(6):1357–1364CrossRefGoogle Scholar
  25. 25.
    Tahernezhad Z, Zamani MJ, Solouki M, Zahravi M, Imamjomeh AA, Jafaraghaei M, Bihamta MR (2009) Genetic diversity of Iranian Aegilops tauschii Coss. using microsatellite molecular markers and morphological traits. Mol Biol Rep. doi:10.1007/s11033-009-9931-6
  26. 26.
    Zane L, Bargelloni L, Patarnello T (2002) Strategies for microsatellite isolation: a review. Mol Ecol 11:1–16CrossRefPubMedGoogle Scholar
  27. 27.
    Marrs RA, Hufbauer RA (2006) Nine polymorphic microsatellite markers in Centaurea stoebe L. [subspecies C. s. stoebe and C. s. micranthos (S. G. Gmelin ex Gugler) Hayek] and C. diffusa Lam. (Asteraceae). Mol Ecol 6:897–899CrossRefGoogle Scholar
  28. 28.
    Vignes H, Hossaert-Mckey M (2006) Development and characterization of microsatellite markers for a monoecious Ficus species, Ficus insipida, and cross species amplification among different sections of Ficus. Mol Ecol 6:792–795CrossRefGoogle Scholar
  29. 29.
    Lopes MS, Maciel GB (2006) Isolation and characterization of simple sequence repeat loci in Rubus hochstetterorum and their use in other species from the Rosaceae family. Mol Ecol 6(3):750–752CrossRefGoogle Scholar
  30. 30.
    Rob C, Durka W (2006) Isolation and characterization of microsatellite markers in the invasive shrub Mahonia aquifolium (Berberidaceae) and their applicability in related species. Mol Ecol 6:948–950CrossRefGoogle Scholar
  31. 31.
    Sudheer PDVN, Sinha R, Kothari P, Reddy MP (2009) Isolation of novel microsatellites from Jatropha curcas L. and their cross species amplification. Mol Ecol Resour 9:431–433CrossRefGoogle Scholar
  32. 32.
    Sudheer PDVN, Rahman H, Mastan SG, Reddy MP (2010) Isolation of novel microsatellites using FIASCO by dual probe enrichment from Jatropha curcas L. and study on genetic equilibrium and diversity of Indian population revealed by isolated microsatellites. Mol Biol Rep. doi:10.1007/s11033-010-0033-2
  33. 33.
    Sun QB, Lin FL, Yong L, Guo-Jiang W, Xue-Jun G (2008) SSR and AFLP markers reveal low genetic diversity in the biofuel plant Jatropha curcas in China. Crop Sci 48:1865–1871CrossRefGoogle Scholar
  34. 34.
    Sudheer PDVN, Sarkar R, Meenakshi, Boricha G, Reddy MP (2009) A simple protocol for isolation of high quality genomic DNA from Jatropha curcas for genetic diversity and molecular marker studies. Indian J Biotechnol 8:187–192Google Scholar
  35. 35.
    Nei M, Li WH (1979) Mathematical model for studying genetic variation in terms of restriction endonucleases. Proc Natl Acad Sci USA 76:5269–5273CrossRefPubMedGoogle Scholar
  36. 36.
    Rohlf FJ (1998) NTSYS-PC numerical taxonomy and multivariate analysis system, version 2.0. Exeter Publications Setauket, New YorkGoogle Scholar
  37. 37.
    Felsenstein J (1985) Confidence limits on phylogenies: an approach using the bootstrap evolution. Int J Org Evol 39:779–783Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2010

Authors and Affiliations

  • Pamidimarri D. V. N. Sudheer
    • 1
    • 2
  • Shaik G. Mastan
    • 1
  • Hifzur Rahman
    • 1
  • Ch. Ravi Prakash
    • 1
  • Sweta Singh
    • 1
  • Muppala P. Reddy
    • 1
    • 3
  1. 1.Discipline of Wasteland ResearchCentral Salt and Marine Chemicals Research Institute (CSIR)BhavnagarIndia
  2. 2.Shree M. and N. Virani Science CollegeSaurashtra UniversityRajkotIndia
  3. 3.Plant Stress Genomics and Technology CenterKing Abdullah University of Science and TechnologyThuwalKingdom of Saudi Arabia

Personalised recommendations