Molecular Biology Reports

, Volume 38, Issue 2, pp 1209–1217

Enhanced protection against nasopharyngeal carriage of Streptococcus pneumoniae elicited by oral multiantigen DNA vaccines delivered in attenuated Salmonella typhimurium

  • Qiao Zhang
  • Qianli Ma
  • Qi Li
  • Wei Yao
  • Changzheng Wang


Developing carrier systems and choosing appropriate antigens are essential steps in improving the safety and efficacy of Streptococcus pneumoniae DNA vaccines, which have enhanced the mucosal protection against nasopharyngeal colonization. In this study, we reconstructed a Salmonella-based balanced-lethal host- eukaryotic vector system, which was used as carrier to orally deliver the Streptococcus pneumoniae multiantigen DNA vaccines encoding psaA (pneumococcal surface adhesion A) and pspA′ (N-terminal of pneumococcal surface protein A) genes. The results showed that the multiantigen DNA vaccines using the new vector system as carrier afforded better protection than the vaccination with injected intramuscularly (i.m.) against Streptococcus pneumoniae D39 colonization infection in BALB/c mice models. This finding has associated with a high level of sIgA in the nasal mucosa as well as systemic IgG antibodies and a shift toward a Th1-mediated immune response. These studies have demonstrated the feasibility and advantage of using the new Salmonella-based balanced-lethal host-eukaryotic vector system as carrier to deliver S. pneumoniae DNA vaccines.


Streptococcus pneumoniae DNA vaccines Nasopharyngeal carriage Balanced-lethal host-vector system Salmonella typhimurium 


  1. 1.
    Bogaert D, De Groot R, Hermans PW (2004) Streptococcus pneumoniae colonisation: the key to pneumococcal disease. Lancet Infect Dis 4:144–154CrossRefPubMedGoogle Scholar
  2. 2.
    (2008) 23-valent pneumococcal polysaccharide vaccine. WHO position paper. Wkly Epidemiol Rec 83:373–384Google Scholar
  3. 3.
    Davies TA, Yee YC, Bush K et al (2008) Effects of the 7-valent pneumococcal conjugate vaccine on U.S. levofloxacin-resistant Streptococcus pneumoniae. Microb Drug Resist 14:187–196CrossRefPubMedGoogle Scholar
  4. 4.
    Lode HM (2009) Clinical impact of antibiotic-resistant Gram-positive pathogens. Clin Microbiol Infect 15:212–217CrossRefPubMedGoogle Scholar
  5. 5.
    Valenzuela MT, De Quadros C (2009) Antibiotic resistance in Latin America: a cause for alarm. Vaccine 27(Suppl 3):C25–C28CrossRefPubMedGoogle Scholar
  6. 6.
    Miyaji EN, Dias WO, Gamberini M et al (2001) PsaA (pneumococcal surface adhesin A) and PspA (pneumococcal surface protein A) DNA vaccines induce humoral and cellular immune responses against Streptococcus pneumoniae. Vaccine 20:805–812CrossRefPubMedGoogle Scholar
  7. 7.
    Kerr AR, Irvine JJ, Search JJ et al (2002) Role of inflammatory mediators in resistance and susceptibility to pneumococcal infection. Infect Immun 70:1547–1557CrossRefPubMedGoogle Scholar
  8. 8.
    Rubins JB, Pomeroy C (1997) Role of gamma interferon in the pathogenesis of bacteremic pneumococcal pneumonia. Infect Immun 65:2975–2977PubMedGoogle Scholar
  9. 9.
    Ferreira DM, Miyaji EN, Oliveira ML et al (2006) DNA vaccines expressing pneumococcal surface protein A (PspA) elicit protection levels comparable to recombinant protein. J Med Microbiol 55:375–378CrossRefPubMedGoogle Scholar
  10. 10.
    Ferreira DM, Darrieux M, Oliveira ML et al (2008) Optimized immune response elicited by a DNA vaccine expressing pneumococcal surface protein a is characterized by a balanced immunoglobulin G1 (IgG1)/IgG2a ratio and proinflammatory cytokine production. Clin Vaccine Immunol 15:499–505CrossRefPubMedGoogle Scholar
  11. 11.
    Lynch JP III, Zhanel GG (2009) Streptococcus pneumoniae: epidemiology, risk factors, and strategies for prevention. Semin Respir Crit Care Med 30:189–209CrossRefPubMedGoogle Scholar
  12. 12.
    Malley R, Trzcinski K, Srivastava A et al (2005) CD4+ T cells mediate antibody-independent acquired immunity to pneumococcal colonization. Proc Natl Acad Sci USA 102:4848–4853CrossRefPubMedGoogle Scholar
  13. 13.
    Williams JA, Carnes AE, Hodgson CP (2009) Plasmid DNA vaccine vector design: impact on efficacy, safety and upstream production. Biotechnol Adv 27:353–370CrossRefPubMedGoogle Scholar
  14. 14.
    Knaust A, Frosch M (2004) Genome-based vaccines. Int J Med Microbiol 294:295–301CrossRefPubMedGoogle Scholar
  15. 15.
    Barouch DH (2006) Rational design of gene-based vaccines. J Pathol 208:283–289CrossRefPubMedGoogle Scholar
  16. 16.
    Nakayama K, Kelly SM, Curtiss R III (1998) Construction of an Asd+ expression-cloning vector: stable maintenance and high level expression of cloned genes in a Salmonella vaccine strain. Bio/Technology 6:693–697CrossRefGoogle Scholar
  17. 17.
    Galan JE, Nakayama K, Curtiss R III (1990) Cloning and characterization of the asd gene of Salmonella typhimurium: use in stable maintenance of recombinant plasmids in Salmonella vaccine strains. Gene 94:29–35CrossRefPubMedGoogle Scholar
  18. 18.
    Kang HY, Srinivasan J, Curtiss R III (2002) Immune responses to recombinant pneumococcal PspA antigen delivered by live attenuated Salmonella enterica serovar typhimurium vaccine. Infect Immun 70:1739–1749CrossRefPubMedGoogle Scholar
  19. 19.
    Briles DE, Ades E, Paton JC et al (2000) Intranasal immunization of mice with a mixture of the pneumococcal proteins PsaA and PspA is highly protective against nasopharyngeal carriage of Streptococcus pneumoniae. Infect Immun 68:796–800CrossRefPubMedGoogle Scholar
  20. 20.
    Bosarge JR, Watt JM, Mcdaniel DO et al (2001) Genetic immunization with the region encoding the alpha-helical domain of PspA elicits protective immunity against Streptococcus pneumoniae. Infect Immun 69:5456–5463CrossRefPubMedGoogle Scholar
  21. 21.
    Wu HY, Virolainen A, Mathews B et al (1997) Establishment of a Streptococcus pneumoniae nasopharyngeal colonization model in adult mice. Microb Pathog 23:127–137CrossRefPubMedGoogle Scholar
  22. 22.
    Liu MA (2010) Gene-based vaccines: recent developments. Curr Opin Mol Ther 12:86–93PubMedGoogle Scholar
  23. 23.
    Darji A, Zur Lage S, Garbe AI et al (2000) Oral delivery of DNA vaccines using attenuated Salmonella typhimurium as carrier. FEMS Immunol Med Microbiol 27:341–349CrossRefPubMedGoogle Scholar
  24. 24.
    Pasetti MF, Barry EM, Losonsky G et al (2003) Attenuated Salmonella enterica serovar Typhi and Shigella flexneri 2a strains mucosally deliver DNA vaccines encoding measles virus hemagglutinin, inducing specific immune responses and protection in cotton rats. J Virol 77:5209–5217CrossRefPubMedGoogle Scholar
  25. 25.
    Qu D, Wang S, Cai W et al (2008) Protective effect of a DNA vaccine delivered in attenuated Salmonella typhimurium against Toxoplasma gondii infection in mice. Vaccine 26:4541–4548CrossRefPubMedGoogle Scholar
  26. 26.
    Curtiss R III, Nakayama K, Kelly SM (1989) Recombinant avirulent Salmonella vaccine strains with stable maintenance and high level expression of cloned genes in vivo. Immunol Invest 18:583–596CrossRefPubMedGoogle Scholar
  27. 27.
    Romero-Steiner S, Pilishvili T, Sampson JS et al (2003) Inhibition of pneumococcal adherence to human nasopharyngeal epithelial cells by anti-PsaA antibodies. Clin Diagn Lab Immunol 10:246–251PubMedGoogle Scholar
  28. 28.
    Paton JC (1998) Novel pneumococcal surface proteins: role in virulence and vaccine potential. Trends Microbiol 6:85–87 discussion 87-8CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2010

Authors and Affiliations

  • Qiao Zhang
    • 1
  • Qianli Ma
    • 1
  • Qi Li
    • 1
  • Wei Yao
    • 1
  • Changzheng Wang
    • 1
  1. 1.Institute of Respiratory Diseases, Xinqiao HospitalThird Military Medical UniversityChongqingPeople’s Republic of China

Personalised recommendations