Molecular Biology Reports

, Volume 38, Issue 1, pp 621–629

Identification of genes differentially expressed in cauliflower associated with resistance to Xanthomonas campestris pv. campestris

  • Hanmin Jiang
  • Wenqin Song
  • Ai Li
  • Xiao Yang
  • Deling Sun


Black rot, caused by Xanthomonas campestris pv. campestris (Pammel) Dowson (Xcc), is one of the most damaging diseases of cauliflower and other crucifers. In order to investigate the molecular resistance mechanisms and to find the genes related to black rot resistance in cauliflower, a suppression subtractive hybridization (SSH) cDNA library was constructed using resistant line C712 and its susceptible near-isogenic line C731 as tester and driver, respectively. A total of 280 clones were obtained from the library by reverse northern blotting. Sequencing analysis and homology searching showed that these clones represent 202 unique sequences. The library included many defense/disease-resistant related genes, such as plant defensin gene PDF1.2, lipid transfer protein, thioredoxin h. Gene expression profiles of 12 genes corresponding to different functional categories were monitored by real-time RT-PCR. The results showed that the expression induction of these genes in the susceptible line C712 in response to Xcc was quicker and more intense, while in C731 the reaction was delayed and limited. Our results imply that these up-regulated genes might be involved in cauliflower responses against Xcc infection. Information obtained from this study could be used to understand the molecular mechanisms of disease response in cauliflower under Xcc stress.


Black rot Brassica oleracea var. botrytis L. Suppression subtractive hybridization Xanthomonas campestris pv. campestris (Pammel) Dowson 



Extracellular Ca2+-sensing receptors


Chalcone-flavanone isomerase


Glutathione peroxidase


Glutathione S-transferase


Lipid transfer protein


Munich information center for protein sequences


Near isogenic lines


Reactive oxygen species


Ribulose-1,5-bisphosphate carboxylase/oxygenase


Suppression subtractive hybridization


Thaumatin-like protein




Xanthomonas campestris pv. campestris (Pammel) Dowson

Supplementary material

11033_2010_148_MOESM1_ESM.doc (140 kb)
Supplementary material 1 (DOC 141 kb)


  1. 1.
    Williams PH (1980) Black rot: a continuing threat to world crucifers. Plant Dis 64:736–742CrossRefGoogle Scholar
  2. 2.
    Ignatov A, Kuginuki Y, Hida K (1999) Vascular stem resistance to black rot in Brassica oleracea. Can J Bot 77:442–446. doi:10.1139/cjb-77-3-442 CrossRefGoogle Scholar
  3. 3.
    Wulff EG, Mguni CM, Mortensen CN (2002) Biological control of black rot (Xanthomonas campestris pv. campestris) of brassicas with an antagonistic strain of Bacillus subtilis in Zimbabwe. Eur J Plant Pathol 108:317–325. doi:10.1023/A:1015671031906 CrossRefGoogle Scholar
  4. 4.
    Taylor JD, Conway J, Roberts SJ et al (2002) Sources and origin of resistance to Xanthomonas campestris pv. campestris in Brassica genomes. Phytopathology 92:105–111. doi:10.1094/PHYTO.2002.92(1):105-111 CrossRefPubMedGoogle Scholar
  5. 5.
    Vicente JG, Taylor JD, Sharpe AG et al (2002) Inheritance of race-specific resistance to Xanthomonas campestris pv. campestris in Brassica genomes. Phytopathology 92:1134–1141. doi:10.1094/PHYTO.2002.92.10.1134 CrossRefPubMedGoogle Scholar
  6. 6.
    Qian W, Jia Y, Ren SX et al (2005) Comparative and functional genomic analyses of the pathogenicity of phytopathogen Xanthomonas campestris pv. campestris. Genome Res 15:757–767. doi:10.1101/gr.3378705 CrossRefPubMedGoogle Scholar
  7. 7.
    da Silva AC, Ferro JA, Reinach FC et al (2002) Comparison of the genomes of two Xanthomonas pathogens with differing host specificities. Nature 417:459–463. doi:10.1038/417459a CrossRefPubMedGoogle Scholar
  8. 8.
    Castañeda A, Reddy JD, El-Yacoubi B et al (2005) Mutagenesis of all eight avr genes in Xanthomonas campestris pv. campestris had no detected effect on pathogenicity, but one avr gene affected race specificity. Mol Plant Microbe Interact 18:1306–1317. doi:10.1094/MPMI-18-1306 CrossRefPubMedGoogle Scholar
  9. 9.
    Jiang W, Jiang BL, Xu RQ et al (2009) Identification of six type III effector genes with the PIP box in Xanthomonas campestris pv. campestris and five of them contribute individually to full pathogenicity. Mol Plant Microbe Interact 22:1401–1411. doi:10.1094/MPMI-22-11-1401 CrossRefPubMedGoogle Scholar
  10. 10.
    Villeth GR, Reis FB Jr, Tonietto A et al (2009) Qualitative and comparative proteome analysis of Xanthomonas campestris pv. campestris in the interaction with the susceptible and the resistant cultivars of Brassica oleracea. FEMS Microbiol Lett 298:260–266. doi:10.1111/j.1574-6968.2009.01728.x CrossRefPubMedGoogle Scholar
  11. 11.
    Lu GT, Tang YQ, Li CY et al (2009) An adenosine kinase exists in Xanthomonas campestris pathovar campestris and is involved in extracellular polysaccharide production, cell motility, and virulence. J Bacteriol 191:3639–3648. doi:10.1128/JB.00009-09 CrossRefPubMedGoogle Scholar
  12. 12.
    McCarthy Y, Ryan RP, O’Donovan K et al (2008) The role of PilZ domain proteins in the virulence of Xanthomonas campestris pv. campestris. Mol Plant Pathol 9:819–824. doi:10.1111/j.1364-3703.2008.00495.x CrossRefPubMedGoogle Scholar
  13. 13.
    Dickson MD, Hunter JE (1987) Inheritance of resistance in cabbage seedlings to black rot. HortScience 22:108–109Google Scholar
  14. 14.
    Camargo LEA, Williams PH, Osbourn TC (1995) Mapping of quantitative trait loci controlling resistance of Brassica oleracea to Xanthomonas campestris pv. campestris in field and greenhouse. Phytopathology 85:1296–1300CrossRefGoogle Scholar
  15. 15.
    Ignatov A, Kuginuki Y, Hida K (2000) Distribution and inheritance of race-specific resistance to Xanthomonas campestris pv. campestris in Brassica rapa and B. napus. J Russ Phytopathol 1:89–94Google Scholar
  16. 16.
    Jin H, Sun Y, Yang Q et al (2010) Screening of genes induced by salt stress from Alfalfa. Mol Biol Rep 37:745–753. doi:10.1007/s11033-009-9590-7 CrossRefPubMedGoogle Scholar
  17. 17.
    Yue G, Hu X, He Y et al (2010) Identification and characterization of two members of the FtsH gene family in maize (Zea mays L.). Mol Biol Rep 37:855–863. doi:10.1007/s11033-009-9691-3 CrossRefPubMedGoogle Scholar
  18. 18.
    Luo Y, Lv GL, Wu WT et al (2010) Analysis of genome expression in the response of Oryza granulata to Xanthomonas oryzae pv oryzae. Mol Biol Rep 37:875–892. doi:10.1007/s11033-009-9694-0 CrossRefPubMedGoogle Scholar
  19. 19.
    Kathju S, Satish L, Rabik C et al (2006) Identification of differentially expressed genes in scarless wound healing utilizing polymerase chain reaction-suppression subtractive hybridization. Wound Repair Regen 14:413–420. doi:10.1111/j.1743-6109.2006.00140.x CrossRefPubMedGoogle Scholar
  20. 20.
    Xiong L, Lee MW, Qi M et al (2000) Identification of defense-related rice genes by suppression subtractive hybridization and differential screening. Mol Plant Microbe Interact 14:685–692. doi:10.1094/MPMI.2001.14.5.685 CrossRefGoogle Scholar
  21. 21.
    Ignatov A, Kuginuki Y, Hida K (1998) Race-specific reaction of resistance to black rot in Brassica oleracea. Eur J Plant Pathol 104:821–827. doi:10.1023/A:1008642829156 CrossRefGoogle Scholar
  22. 22.
    Lummerzheim M, Kroj T, Ferreira M et al (2004) An Arabidopsis mutant with altered hypersensitive response to Xanthomonas campestris pv. campestris hxc1, displays a complex pathophenotype. Mol Plant Pathol 5:453–464. doi:10.1111/J.1364-3703.2004.00245.X CrossRefPubMedGoogle Scholar
  23. 23.
    Carmo LST, Candido ES, Campos PF et al (2007) Natural variability in Arabidopsis thaliana germplasm response to Xanthomonas campestris pv. campestris. Fitopatol Bras 32:97–103. doi:10.1590/S0100-41582007000200001 Google Scholar
  24. 24.
    Terrier N, Ageorges A, Abbal P et al (2001) Generation of ESTs from grape berry at various developmental stages. J Plant Physiol 158:1575–1583. doi:10.1078/0176-1617-00566 CrossRefGoogle Scholar
  25. 25.
    Altschul SF, Madden TL, Schaffer AA et al (1997) Gapped BLAST and PSIBLAST: a new generation of protein database search programs. Nucleic Acids Res 25:3389–3402CrossRefPubMedGoogle Scholar
  26. 26.
    Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2(-delta delta C(T)) method. Methods 25:402–408. doi:10.1006/meth.2001.1262 CrossRefPubMedGoogle Scholar
  27. 27.
    Wulf A, Manthey K, Doll J et al (2003) Transcriptional changes in response to arbuscular mycorrhiza development in the model plant Medicago truncatula. Mol Plant Microbe Interact 16:306–314. doi:10.1094/MPMI.2003.16.4.306 CrossRefPubMedGoogle Scholar
  28. 28.
    Whitney SM, von Caemmerer S, Hudson GS et al (1999) Directed mutation of the rubisco large subunit of tobacco influences photorespiration and growth. Plant Physiol 121:579–588CrossRefPubMedGoogle Scholar
  29. 29.
    Yu XM, Yu XD, Qu ZP et al (2007) Construction of wheat SSH cDNA library induced by Puccinia striiformis and analysis of expressed sequence tags. Acta Phytopathol Sin 37:50–55Google Scholar
  30. 30.
    Kufeyk G, Kieselbach T, Mitanda H (2008) Association of small CAB-like proteins (SCPs) of Synechocystis sp. PCC 6803 with photosystem II. Photosynth Res 95:135–145. doi:10.1007/s11120-007-9244-3 CrossRefGoogle Scholar
  31. 31.
    Pandey GK, Pandey A, Reddy VS et al (2007) Antisense expression of a gene encoding a calcium-binding protein in transgenic tobacco leads to altered morphology and enhanced chlorophyll. J Biosci 32:251–260CrossRefPubMedGoogle Scholar
  32. 32.
    Wu J, Hu Y, Zhang H et al (2008) Expression of special genes resistant to powdery mildew (Blumeria graminis f. sp. tritici) in wheat germplasm N9436. Acta Agron Sin 34:1143–1152. doi:10.1016/S1875-2780(08)60040-1 Google Scholar
  33. 33.
    Blein JP, Coutos-Thevenot P, Marion D et al (2002) From elicitins to lipid transfer proteins: a new insight in cell signaling involved in plant defence mechanism. Trends Plant Sci 7:293–296. doi:10.1016/S1360-1385(02)02284-7 CrossRefPubMedGoogle Scholar
  34. 34.
    Kader JC (1996) Lipid-transfer proteins in plants. Annu Rev Plant Physiol Plant Mol Biol 47:627–654. doi:10.1146/annurev.arplant.47.1.627 CrossRefPubMedGoogle Scholar
  35. 35.
    Wu Z, Burns JK (2003) Isolation and characterization of a cDNA encoding a lipid transfer protein expressed in ‘Valencia’ orange during abscission. J Exp Bot 54:1183–1191. doi:10.1093/jxb/erg112 CrossRefPubMedGoogle Scholar
  36. 36.
    Jung HW, Lim CW, Hwang BK (2006) Isolation and functional analysis of a pepper lipid transfer protein III (CALTPIII) gene promoter during signaling to pathogen, abiotic and environmental tresses. Plant Sci 170:258–266. doi:10.1016/j.plantsci.2005.08.010 CrossRefGoogle Scholar
  37. 37.
    Sawano Y, Hatano K, Miyakawa T et al (2008) Proteinase inhibitor from ginkgo seeds is a member of plant nonspecific lipid transfer protein gene family. Plant Physiol 146:1909–1919. doi:10.1104/pp.107.111500 CrossRefPubMedGoogle Scholar
  38. 38.
    Liu XF, Xu JZ, Hou YQ et al (1999) Isolation and characterization of a lipid transfer protein gene from rice. Acta Bot Sin 41:736–740Google Scholar
  39. 39.
    Durrant WE, Dong X (2004) Systemic acquired resistance. Annu Rev Phytopathol 42:185–209. doi:10.1146/annurev.phyto.42.040803.140421 CrossRefPubMedGoogle Scholar
  40. 40.
    Von Roepenack-Lahaye E, Newman MA, Schornack S et al (2003) p-Coumaroylnoradrenaline, a novel plant metabolite implicated in tomato defense against pathogens. J Biol Chem 278:43373–43383. doi:10.1074/jbc.M305084200 CrossRefGoogle Scholar
  41. 41.
    Brown RL, Kazan K, McGrath KC (2003) A role for the GCC-box in jasmonate-mediated activation of the PDF1.2 gene of Arabidopsis. Plant Physiol 132:1020–1032. doi:10.1104/pp.102.017814 CrossRefPubMedGoogle Scholar
  42. 42.
    Norman-Setterblad C, Vidal S, Palva ET (2000) Interacting signal pathways control defense gene expression in Arabidopsis in response to cell wall-degrading enzymes from Erwinia carotovora. Mol Plant Microbe Interact 13:430–438. doi:10.1094/MPMI.2000.13.4.430 CrossRefPubMedGoogle Scholar
  43. 43.
    Penninckx IA, Eggermont K, Terras FR (1996) Pathogen-induced systemic activation of a plant defensin gene in Arabidopsis follows a salicylic acid-independent pathway. Plant Cell 8:2309–2323CrossRefPubMedGoogle Scholar
  44. 44.
    Punja ZK (2005) Transgenic carrots expressing a thaumatin-like protein display enhanced resistance to several fungal pathogens. Can J Plant Pathol 27:291–296CrossRefGoogle Scholar
  45. 45.
    Datta K, Velazhahan R, Oliva N et al (2005) Over-expression of the cloned rice thaumatin-like protein (PR-5) gene in transgenic rice plants enhances environmental friendly resistance to Rhizoctonia solani causing sheath blight disease. Theor Appl Genet 98:1138–1145. doi:10.1007/s001220051178 CrossRefGoogle Scholar
  46. 46.
    Vieira Dos Santos C, Rey P (2006) Plant thioredoxins are key actors in the oxidative stress response. Trends Plant Sci 11:329–334. doi:10.1016/j.tplants.2006.05.005 CrossRefPubMedGoogle Scholar
  47. 47.
    Laloi C, Mestres-Ortega D, Marco Y et al (2004) The Arabidopsis cytosolic thioredoxin h5 gene induction by oxidative stress and its W-box-mediated response to pathogen elicitor. Plant Physiol 134:1006–1016. doi:10.1104/pp.103.035782 CrossRefPubMedGoogle Scholar
  48. 48.
    Lee MY, Shin KH, Kim YK et al (2005) Induction of thioredoxin is required for nodule development to reduce reactive oxygen species levels in soybean roots. Plant Physiol 139:1881–1889. doi:10.1104/pp.105.067884 CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2010

Authors and Affiliations

  • Hanmin Jiang
    • 1
  • Wenqin Song
    • 1
  • Ai Li
    • 1
  • Xiao Yang
    • 1
  • Deling Sun
    • 2
  1. 1.College of Life SciencesNankai UniversityTianjinPeople’s Republic of China
  2. 2.Tianjin Kernel Vegetable Research InstituteTianjinPeople’s Republic of China

Personalised recommendations