Advertisement

Molecular Biology Reports

, Volume 38, Issue 1, pp 139–143 | Cite as

IL-29 and IFN-α regulate the expression of MxA, 2′,5′-OAS and PKR genes in association with the activation of Raf-MEK-ERK and PI3K-AKT signal pathways in HepG2.2.15 cells

  • Yu Chai
  • Hai-Liang Huang
  • Dao-Jun Hu
  • Xin Luo
  • Qian-Shan Tao
  • Xiao-Ling Zhang
  • Sheng-Quan ZhangEmail author
Article

Abstract

Interferons (IFNs) can activate the PI3K-AKT and Raf-MEK-ERK signal pathways and induce antiviral proteins (MxA, 2′,5′-OAS and PKR) expression in specific cell lines. However, the relationship between those antiviral proteins expression and signal pathways remains unknown at present. Thus our experiments were designed to determine the exact relationship in HepG2.2.15 cell line. The results demonstrated that IFN-α and IL-29 were both able to activate PI3K-AKT and Raf-MEK-ERK signal pathways, and IFN-α up-regulated the expression of MxA, 2′,5′-OAS and PKR whereas IL-29 increased mRNA expression of MxA and 2′,5′-OAS and had no influence on PKR. Furthermore, MxA, 2′,5′-OAS and PKR expression were down-regulated while PI3K-AKT signal pathway was blocked by LY294002. And MxA was up-regulated after Raf-MEK-ERK signal pathway being blocked by PD98059. These findings indicate that the expression of MxA, 2′,5′-OAS and PKR are up-regulate by PI3K-AKT signal pathway, and Raf-MEK-ERK signal pathway has a negative regulatory effect on the expression of MxA and no significant effect on 2′,5′-OAS and PKR.

Keywords

Interleukin 29 MxA 2′,5′-OAS PKR P-ERK P-AKT 

Notes

Acknowledgement

This work was supported by the Natural Science Foundation from the Science & Technology Committee of Anhui Province (050430604).

Supplementary material

11033_2010_87_MOESM1_ESM.doc (32 kb)
Supplementary material 1 (DOC 32 kb)

References

  1. 1.
    Pestka S, Krause CD, Walter MR (2004) Interferons, interferon-like cytokines, and their receptors. Immunol Rev 202:8–32CrossRefPubMedGoogle Scholar
  2. 2.
    Sheppard P, Kindsvogel W, Xu W, Henderson K, Schlutsmeyer S, Whitmore TE, Kuestner R, Garrigues U, Birks C, Roraback J, Ostrander C, Dong D, Shin J, Presnell S, Fox B, Haldeman B, Cooper E, Taft D, Gilbert T, Grant FJ, Tackett M, Krivan W, McKnight G, Clegg C, Foster D, Klucher KM (2003) IL-28, IL-29 and their class II cytokine receptor IL-28R. Nat Immunol 4:63–68CrossRefPubMedGoogle Scholar
  3. 3.
    Kotenko SV, Gallagher G, Baurin VV, Lewis-Antes A, Shen M, Shah NK, Langer JA, Sheikh F, Dickensheets H, Donnelly RP (2003) IFN-lambdas mediate antiviral protection through a distinct class II cytokine receptor complex. Nat Immunol 4:69–77CrossRefPubMedGoogle Scholar
  4. 4.
    Stark GR, Kerr IM, Williams BR, Silverman RH, Schreiber RD (1998) How cells respond to interferons. Annu Rev Biochem 67:227–264CrossRefPubMedGoogle Scholar
  5. 5.
    Vlotides G, Sorensen AS, Kopp F, Zitzmann K, Cengic N, Brand S, Zachoval R, Auernhammer CJ (2004) SOCS-1 and SOCS-3 inhibit IFN-alpha-induced expression of the antiviral proteins 2, 5-OAS and MxA. Biochem Biophys Res Commun 320:1007–1014CrossRefPubMedGoogle Scholar
  6. 6.
    Song MM, Shuai K (1998) The suppressor of cytokine signaling (SOCS) 1 and SOCS3 but not SOCS2 proteins inhibit interferon-mediated antiviral and antiproliferative activities. J Biol Chem 273:35056–35062CrossRefPubMedGoogle Scholar
  7. 7.
    Horvath CM, Darnell JE Jr (1996) The antiviral state induced by alpha interferon and gamma interferon requires transcriptionally active Stat1 protein. J Virol 70:647–650PubMedGoogle Scholar
  8. 8.
    Heim MH (2000) Intracellular signalling and antiviral effects of interferons. Dig Liver Dis 32:257–263CrossRefPubMedGoogle Scholar
  9. 9.
    Matsumoto A, Ichikawa T, Nakao K, Miyaaki H, Hirano K, Fujimito M, Akiyama M, Miuma S, Ozawa E, Shibata H, Takeshita S, Yamasaki H, Ikeda M, Kato N, Eguchi K (2009) Interferon-alpha-induced mTOR activation is an anti-hepatitis C virus signal via the phosphatidylinositol 3-kinase-Akt-independent pathway. J Gastroenterol 44:856–863CrossRefPubMedGoogle Scholar
  10. 10.
    Hokeness K, Qiu LH, Vezeridis M, Yan BF, Mehta S, Wan YS (2005) IFN-gamma enhances paclitaxel-induced apoptosis that is modulated by activation of caspases 8 and 3 with a concomitant down regulation of the AKT survival pathway in cultured human keratinocytes. Oncol Rep 13:965–969PubMedGoogle Scholar
  11. 11.
    Kane LP, Andres PG, Howland KC, Abbas AK, Weiss A (2001) Akt provides the CD28 costimulatory signal for up-regulation of IL-2 and IFN-gamma but not TH2 cytokines. Nat Immunol 2:37–44CrossRefPubMedGoogle Scholar
  12. 12.
    Chan ED, Riches DW (2001) IFN-gamma + LPS induction of iNOS is modulated by ERK, JNK/SAPK, and p38(mapk) in a mouse macrophage cell line. Am J Physiol Cell Physiol 280:C441–C450PubMedGoogle Scholar
  13. 13.
    Petro TM (2005) ERK-MAP-kinases differentially regulate expression of IL-23 p19 compared with p40 and IFN-beta in Theiler’s virus-infected RAW264.7 cells. Immunol Lett 97:47–53CrossRefPubMedGoogle Scholar
  14. 14.
    Wennstrom S, Downward J (1999) Role of phosphoinositide 3-kinase in activation of ras and mitogen-activated protein kinase by epidermal growth factor. Mol Cell Biol 19:4279–4288PubMedGoogle Scholar
  15. 15.
    Yu X, Song M, Chen J, Zhu G, Zhao G, Wang H, Hunag L (2009) Hepatocyte growth factor protects endothelial progenitor cell from damage of low-density lipoprotein cholesterol via the PI3K/Akt signaling pathway. Mol Biol Rep. doi: 10.1007/s11033-009-9753-6 Google Scholar
  16. 16.
    Lee SH, Schloss DJ, Swain JL (2000) Maintenance of vascular integrity in the embryo requires signaling through the fibroblast growth factor receptor. J Biol Chem 275:33679–33687CrossRefPubMedGoogle Scholar
  17. 17.
    Dudley DT, Pang L, Decker SJ, Bridges AJ, Saltiel AR (1995) A synthetic inhibitor of the mitogen-activated protein kinase cascade. Proc Natl Acad Sci USA 92:7686–7689CrossRefPubMedGoogle Scholar
  18. 18.
    Davies SP, Reddy H, Caivano M, Cohen P (2000) Specificity and mechanism of action of some commonly used protein kinase inhibitors. Biochem J 351:95–105CrossRefPubMedGoogle Scholar
  19. 19.
    Sells MA, Chen ML, Acs G (1987) Production of hepatitis B virus particles in Hep G2 cells transfected with cloned hepatitis B virus DNA. Proc Natl Acad Sci USA 84:1005–1009CrossRefPubMedGoogle Scholar
  20. 20.
    Sun WH, Pabon C, Alsayed Y, Huang PP, Jandeska S, Uddin S, Platanias LC, Rosen ST (1998) Interferon-alpha resistance in a cutaneous T-cell lymphoma cell line is associated with lack of STAT1 expression. Blood 91:570–576PubMedGoogle Scholar
  21. 21.
    Samuel CE (2001) Antiviral actions of interferons. Clin Microbiol Rev 14:778–809CrossRefPubMedGoogle Scholar
  22. 22.
    Bottrel RL, Yang YL, Levy DE, Tomai M, Reis LF (1999) The immune response modifier imiquimod requires STAT-1 for induction of interferon, interferon-stimulated genes, and interleukin-6. Antimicrob Agents Chemother 43:856–861PubMedGoogle Scholar
  23. 23.
    Pandey M, Rath PC (2007) Organization of the interferon-inducible 2′,5′-oligoadenylate-dependent ribonuclease L (RNase L) gene of mouse. Mol Biol Rep 34:97–104CrossRefPubMedGoogle Scholar
  24. 24.
    Borden EC, Sen GC, Uze G, Silverman RH, Ransohoff RM, Foster GR, Stark GR (2007) Interferons at age 50: past, current and future impact on biomedicine. Nat Rev Drug Discov 6:975–990CrossRefPubMedGoogle Scholar
  25. 25.
    Ichikawa T, Nakao K, Nakata K, Yamashita M, Hamasaki K, Shigeno M, Abiru S, Ishikawa H, Ishii N, Eguchi K (2002) Involvement of IL-1beta and IL-10 in IFN-alpha-mediated antiviral gene induction in human hepatoma cells. Biochem Biophys Res Commun 294:414–422CrossRefPubMedGoogle Scholar
  26. 26.
    Justesen J, Hartmann R, Kjeldgaard NO (2000) Gene structure and function of the 2′-5′-oligoadenylate synthetase family. Cell Mol Life Sci 57:1593–1612CrossRefPubMedGoogle Scholar
  27. 27.
    Tanaka H, Samuel CE (1994) Mechanism of interferon action: structure of the mouse PKR gene encoding the interferon-inducible RNA-dependent protein kinase. Proc Natl Acad Sci USA 91:7995–7999CrossRefPubMedGoogle Scholar
  28. 28.
    Cao B, Liu X, Hou F, Li W, Han Z, Zhang Q, Dai Y, Xu C, Qi H (2009) The haplotype of the MxA gene promoter is associated with hepatitis B virus infection in a Chinese population. Liver Int 29:1383–1388CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2010

Authors and Affiliations

  • Yu Chai
    • 1
  • Hai-Liang Huang
    • 1
  • Dao-Jun Hu
    • 1
  • Xin Luo
    • 1
  • Qian-Shan Tao
    • 1
  • Xiao-Ling Zhang
    • 1
  • Sheng-Quan Zhang
    • 1
    Email author
  1. 1.Department of Biochemistry and Molecular BiologyAnhui Medical UniversityHefeiChina

Personalised recommendations