Molecular Biology Reports

, Volume 37, Issue 8, pp 3921–3929 | Cite as

Analysis on DNA sequence of KiSS-1 gene and its association with litter size in goats

  • G. L. Cao
  • M. X. ChuEmail author
  • L. Fang
  • R. Di
  • T. Feng
  • N. Li


Three pairs of primers were designed to clone the goat KiSS-1 and scan polymorphisms and four pairs to detect polymorphisms in sexual precocious and sexual late-maturing goat breeds. A 4118 bp DNA fragment was obtained, which contains an ORF of 408 bp and encodes 135 amino acids, having a high homology with other mammals. The protein was predicted containing a signal peptide of 17 amino acids. There are two mutations (G3433A [A86T] and C3688A) in exon 3, three mutations (G296C, G454T and T505A) in intron 1 and a 18 bp deletion (−)/insertion (+) (1960–1977) in intron 2 and no mutations in exon 2. The genotype distribution didn’t show obvious difference between sexual precocious and sexual late-maturing goat breeds and no consistency within the sexual late-maturing breeds. For the 296 locus, the Jining Grey goats with genotype CC had 0.80 (P < 0.01) or 0.77 (P < 0.01) kids more than those with genotype GG or GC, respectively. No significant difference (P > 0.05) was found in litter size between GG and GC. For the 1960–1977 locus, the Jining Grey goat does with genotype −/− had 0.77 (P < 0.01) or 0.73 (P < 0.01) kids more than those with +/+ or +/−, respectively. No significant difference (P > 0.05) was found in litter size between +/+ and +/− genotypes. For the other four loci, no significant difference (P > 0.05) was found in litter size between different genotypes in Jining Grey goats. The present study preliminarily indicated an association between allele C of the 296 locus and allele (−) of the 1960–1977 locus in KiSS-1 and high litter size in Jining Grey goats.


Goat KiSS-1 Sexual precocity Litter size PCR–RFLP 



This work was supported by National Natural Science Foundation of China (30871773), National High Technology Research and Development Program of China (2006AA10Z139), National Key Basic Research and Development Program of China (2006CB102105), the earmarked fund for Modern Agro-Industry Technology Research System of China (nycytx-39).

Supplementary material

11033_2010_49_MOESM1_ESM.docx (125 kb)
Supplementary material 1 (DOCX 126 kb)


  1. 1.
    Lee JH, Miel ME, Hicks DJ, Phillips KK, Trent JM, Weissman BE, Welch DR (1996) KiSS-1, a novel human malignant melanoma metastasis-suppressor gene. J Natl Cancer Inst 88(23):1731–1736CrossRefPubMedGoogle Scholar
  2. 2.
    Luan X, Zhou Y, Wang W, Yu H, Li P, Gan X, Wei D, Xiao J (2007) Association study of the polymorphisms in the KISS1 gene with central precocious puberty in Chinese girls. Eur J Endocrinol 157:113–118CrossRefPubMedGoogle Scholar
  3. 3.
    Kotani M, Detheux M, Vandenbogaerde A, Communi D, Vanderwinden JM, Le Poul E, Brezillon S, Tyldesley R, Suarez-Huerta N, Vandeput F, Blanpain C, Schiffmann SN, Vassart G, Parmentier M (2001) The metastasis suppressor gene KiSS-1 encodes kisspeptins, the natural ligands of the orphan G protein coupled receptor GPR54. J Biol Chem 276(37):34631–34636CrossRefPubMedGoogle Scholar
  4. 4.
    Ohtaki T, Shintani Y, Honda S, Matsumoto H, Hori A, Kanehashi K, Terao Y, Kumano S, Takatsu Y, Masuda Y, Ishibashi Y, Watanabe T, Asada M, Yamada T, Suenaga M, Kitada C, Usuki S, Kurokawa T, Onda H, Nishimura O, Fujino M (2001) Metastasis suppressor gene KiSS-1 encodes peptide ligand of a G-protein-coupled receptor. Nature 411(6837):613–617CrossRefPubMedGoogle Scholar
  5. 5.
    Messager S, Chatzidaki EE, Ma D, Hendrick AG, Zahn D, Dixon J, Thresher RR, Malinge I, Lomet D, Carlton MB, Colledge WH, Caraty A, Aparicio SA (2005) Kisspeptin directly stimulates gonadotropin-releasing hormone release via G protein-coupled receptor 54. Proc Natl Acad Sci USA 102(5):1761–1766CrossRefPubMedGoogle Scholar
  6. 6.
    d’Anglemont de Tassigny X, Fagg LA, Dixon JP, Day K, Leitch HG, Hendrick AG, Zahn D, Franceschini I, Caraty A, Carlton MB, Aparicio SA, Colledge WH (2007) Hypogonadotropic hypogonadism in mice lacking a functional Kiss1 gene. Proc Natl Acad Sci USA 104(25):10714–10719CrossRefPubMedGoogle Scholar
  7. 7.
    Smith JT, Clay CM, Caraty A, Clarke IJ (2007) KiSS-1 messenger ribonucleic acid expression in the hypothalamus of the ewe is regulated by sex steroids and season. Endocrinology 148(3):1150–1157CrossRefPubMedGoogle Scholar
  8. 8.
    Gottsch ML, Cunningham MJ, Smith JT, Popa SM, Acohido BV, Crowley WF, Seminara S, Clifton DK, Steiner RA (2004) A role for kisspeptins in the regulation of gonadotropin secretion in the mouse. Endocrinology 145:4073–4077CrossRefPubMedGoogle Scholar
  9. 9.
    Smith JT, Dungan HM, Stoll EA, Gottsch ML, Braun RE, Eacker SM, Clifton DK, Steiner RA (2005) Differential regulation of KiSS-1 mRNA expression by sex steroids in the brain of the male mouse. Endocrinology 146:2976–2984CrossRefPubMedGoogle Scholar
  10. 10.
    Franceschini I, Lomet D, Cateau M, Delsol G, Tillet Y, Caraty A (2006) Kisspeptin immunoreactive cells of the ovine preoptic area and arcuate nucleus coexpress estrogen receptor. Neurosci Lett 401:225–230CrossRefPubMedGoogle Scholar
  11. 11.
    Plant TM (2006) The role of KiSS-1 in the regulation of puberty in higher primates. Eur J Endocrinol 155:S11–S16CrossRefPubMedGoogle Scholar
  12. 12.
    Dhillo WS, Chaudhri OB, Patterson M, Thompson EL, Murphy KG, Badman MK, McGowan BM, Amber V, Patel S, Ghatei MA, Bloom SR (2005) Kisspeptin-54 stimulates the hypothalamic–pituitary gonadal axis in human males. J Clin Endocrinol Metab 90:6609–6615CrossRefPubMedGoogle Scholar
  13. 13.
    Han SK, Gottsch ML, Lee KJ, Popa SM, Smith JT, Jakawich SK, Clifton DK, Steiner RA, Herbison AE (2005) Activation of gonadotropin-releasing hormone neurons by kisspeptin as a neuroendocrine switch for the onset of puberty. J Neurosci 25(49):11349–11356CrossRefPubMedGoogle Scholar
  14. 14.
    Irwig MS, Fraley GS, Smith JT, Acohido BV, Popa SM, Cunningham MJ, Gottsch ML, Clifton DK, Steiner RA (2004) Kisspeptin activation of gonadotropin releasing hormone neurons and regulation of KiSS-1 mRNA in the male rat. Neuroendocrinology 80:264–272CrossRefPubMedGoogle Scholar
  15. 15.
    Matsui H, Takatsu Y, Kumano S, Matsumoto H, Ohtaki T (2004) Peripheral administration of metastin induces marked gonadotropin release and ovulation in the rat. Biochem Biophys Res Commun 320:383–388CrossRefPubMedGoogle Scholar
  16. 16.
    Navarro VM, Castellano JM, Fernandez-Fernandez R, Barreiro ML, Roa J, Sanchez-Criado JE, Aguilar E, Dieguez C, Pinilla L, Tena-Sempere M (2004) Developmental and hormonally regulated messenger ribonucleic acid expression of KiSS-1 and its putative receptor, GPR54, in rat hypothalamus and potent luteinizing hormone-releasing activity of KiSS-1 peptide. Endocrinology 145(10):4565–4574CrossRefPubMedGoogle Scholar
  17. 17.
    Navarro VM, Castellano JM, Fernandez-Fernandez R, Tovar S, Roa J, Mayen A, Nogueiras R, Vazquez MJ, Barreiro ML, Magni P, Aguilar E, Dieguez C, Pinilla L, Tena-Sempere M (2005) Characterization of the potent luteinizing hormone-releasing activity of KiSS-1 peptide, the natural ligand of GPR54. Endocrinology 146:156–163CrossRefPubMedGoogle Scholar
  18. 18.
    Navarro VM, Castellano JM, Fernandez-Fernandez R, Tovar S, Roa J, Mayen A, Barreiro ML, Casanueva FF, Aguilar E, Dieguez C, Pinilla L, Tena-Sempere M (2005) Effects of KiSS-1 peptide, the natural ligand of GPR54, on follicle-stimulating hormone secretion in the rat. Endocrinology 146:1689–1697CrossRefPubMedGoogle Scholar
  19. 19.
    Thompson EL, Patterson M, Murphy KG, Smith KL, Dhillo WS, Todd JF, Ghatei MA, Bloom SR (2004) Central and peripheral administration of kisspeptin-10 stimulates the hypothalamic–pituitary–gonadal axis. J Neuroendocrinol 16(10):850–858CrossRefPubMedGoogle Scholar
  20. 20.
    Estrada KM, Clay CM, Pompolo S, Smith JT, Clarke IJ (2006) Elevated KiSS-1 expression in the arcuate nucleus prior to the cyclic preovulatory gonadotrophin-releasing hormone/lutenising hormone surge in the ewe suggests a stimulatory stimulatory role for kisspeptin in oestrogen-positive feedback. J Neuroendocrinol 18:806–809CrossRefPubMedGoogle Scholar
  21. 21.
    Hashizume T, Saito H, Sawada T, Yaegashi T, Ahmed Ezzat A, Sawai K, Yamashita T (2009) Characteristics of stimulation of gonadotropin secretion by kisspeptin-10 in female goats. Anim Reprod Sci 118:37–41CrossRefGoogle Scholar
  22. 22.
    Plant TM, Ramaswamy S, Dipietro MJ (2006) Repetitive activation of hypothalamic G protein-coupled receptor 54 with intravenous pulses of kisspeptin in the juvenile monkey (Macaca mulatta) elicits a sustained train of gonadotropin-releasing hormone discharges. Endocrinology 147(2):1007–1013CrossRefPubMedGoogle Scholar
  23. 23.
    Greives TJ, Mason AO, Scotti MA, Levine J, Ketterson ED, Kriegsfeld LJ, Demas GE (2007) Environmental control of kisspeptin: implications for seasonal reproduction. Endocrinology 148(3):1158–1166CrossRefPubMedGoogle Scholar
  24. 24.
    Revel FG, Saboureau M, Masson-Pevet M, Pevet P, Mikkelsen JD, Simonneaux V (2006) Kisspeptin mediates the photoperiodic control of reproduction in hamsters. Curr Biol 16(17):1730–1735CrossRefPubMedGoogle Scholar
  25. 25.
    Revel FG, Ansel L, Klosen P, Saboureau M, Pevet P, Mikkelsen JD, Simonneaux V (2007) Kisspeptin: a key link to seasonal breeding. Rev Endocr Metab Disord 8(1):57–65CrossRefPubMedGoogle Scholar
  26. 26.
    Filby AL, Aerle R, Duitman J, Tyler CR (2008) The kisspeptin/gonadotropin-releasing hormone pathway and molecular signaling of puberty in fish. Biol Reprod 78(2):278–289CrossRefPubMedGoogle Scholar
  27. 27.
    Kaiser UB, Kuohung W (2005) KiSS-1 and GPR54 as new players in gonadotropin regulation and puberty. Endocrine 26(3):277–284CrossRefPubMedGoogle Scholar
  28. 28.
    Tena-Sempere M (2006) GPR54 and kisspeptin in reproduction. Hum Reprod Update 12(5):631–639CrossRefPubMedGoogle Scholar
  29. 29.
    Tena-Sempere M (2006) The roles of kisspeptins and G protein-coupled receptor-54 in pubertal development. Curr Opin Pediatr 18(4):442–447CrossRefPubMedGoogle Scholar
  30. 30.
    Navarro VM, Tena-Sempere M (2008) The KiSS-1/GPR54 system: putative target for endocrine disruption of reproduction at hypothalamic–pituitary unit. Int J Androl 31(2):224–232CrossRefPubMedGoogle Scholar
  31. 31.
    Tu YR (1989) The sheep and goat breeds in China. Shanghai Science and Technology Press, Shanghai, pp 88–90, 98–101Google Scholar
  32. 32.
    Zhang SW (2009) Annals of farm animal breeds in Liaoning province. Liaoning Science and Technology Publishing House, Liaoning, 104 ppGoogle Scholar
  33. 33.
    Malan SW (2000) The improved Boer goat. Small Rumin Res 36(2):165–170CrossRefPubMedGoogle Scholar
  34. 34.
    Tao XP, Wang H, Ju SC, Ni ZL, Diao XJ (2001) Preliminary study on reproductive performance of the Boer goat. China Herbiv 3(5):26–27Google Scholar
  35. 35.
    Gong ZJ, Hou WJ, Dong XA, Qu GK, Wang JP, Xu GP (2003) The characteristics and management of Wendeng milk goat. Ecol Domest Anim 24(4):79–80Google Scholar
  36. 36.
    Greyling JP (2000) Reproduction traits in the Boer goat doe. Small Rumin Res 36(2):171–177CrossRefPubMedGoogle Scholar
  37. 37.
    Feng T, Zhao YZ, Chu MX, Zhang YJ, Fang L, Di R, Cao GL, Li N (2009) Association between sexual precocity and alleles of KISS-1 and GPR54 genes in goats. Anim Biotechnol 20(3):172–176CrossRefPubMedGoogle Scholar
  38. 38.
    Rothschild M, Jacobson C, Vaske D, Tuggle C, Wang L, Short T, Eckardt G, Sasaki S, Vincent A, Mclaren D, Southwood O, Steen HVD, Mileham A, Plastow G (1996) The estrogen receptor locus is associated with a major gene influencing litter size in pigs. Proc Natl Acad Sci USA 93:201–205CrossRefPubMedGoogle Scholar
  39. 39.
    Szreder T, Zwierzchowski L (2007) Estrogen receptors and their genes-potential markers of functional and production traits of farm animals. Mol Biol Rep 34:207–211CrossRefPubMedGoogle Scholar
  40. 40.
    Hanrahan JP, Gregan SM, Mulsant P, Mullen M, Davis GH, Powell R, Galloway SM (2004) Mutations in the genes for oocyte-derived growth factors gdf9 and bmp15 are associated with both increased ovulation rate and sterility in Cambridge and Belclare sheep (Ovis aries). Biol Reprod 70:900–909CrossRefPubMedGoogle Scholar
  41. 41.
    Lin HC, Liu GF, Wang AG, Kong LJ, Wang XF, Fu JL (2009) Effect of polymorphism in the leukemia inhibitory factor gene on litter size in large white pigs. Mol Biol Rep 36:1833–1838CrossRefPubMedGoogle Scholar
  42. 42.
    Chu MX, Wang XC, Jin M, Di R, Chen HQ, Zhu GQ, Fang L, Ma YH, Li K (2009) DNA polymorphism of 5′-flanking region of prolactin gene and its association with litter size in sheep. J Anim Breed Genet 126:63–68CrossRefPubMedGoogle Scholar
  43. 43.
    Lan XY, Li MJ, Chen H, Zhang LZ, Jing YJ, Wei TB, Ren G, Wang X, Fang XT, Zhang CL, Lei CZ (2009) Analysis of caprine pituitary specific transcription factor-1 gene polymorphism in indigenous Chinese goats. Mol Biol Rep 36:705–709CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2010

Authors and Affiliations

  • G. L. Cao
    • 1
  • M. X. Chu
    • 1
    Email author
  • L. Fang
    • 1
  • R. Di
    • 1
  • T. Feng
    • 1
  • N. Li
    • 2
  1. 1.Key Laboratory of Farm Animal Genetic Resources and Utilization of Ministry of Agriculture, Institute of Animal ScienceChinese Academy of Agricultural SciencesBeijingPeople’s Republic of China
  2. 2.State Key Laboratory of Agricultural BiotechnologyChina Agricultural UniversityBeijingPeople’s Republic of China

Personalised recommendations