Molecular Biology Reports

, Volume 37, Issue 7, pp 3525–3531 | Cite as

Multicellular genesis of leaf primordium was demonstrated via chimaeric transgenic plant of maize (Zea mays L.) regenerated from Type II calli

  • Zi-Qin XuEmail author
  • Xuan Huang
  • Chao Feng
  • Na Tian
  • Dan Xu
  • Shu-Zhen Feng


Type-II embryonic calli were induced from immature embryos of maize (Zea mays L.) genotype YD and bombarded with beta-glucuronidase gene. Bombarded calli were proliferated on normal N6 medium for 2 weeks at 26°C in the dark and selected on N6 medium containing 1 mg/l 2,4-dichlorophenoxyacetic acid (2,4-D) and 5 mg/l phosphinothricin (PPT) but without casamino acids and proline under the same conditions for 14 days. Regeneration was carried out on hormone-free MS medium containing 5 mg/l phosphinothricin at 26°C under 3000 lux illumination. Plants over 8 cm were transplanted into soil and sprayed with 250 mg/l phosphinothricin when two new leaves appeared. Except normal transgenic plants, chimaeric transgenics also were regenerated in the present work. The expression pattern of beta-glucuronidase gene in leaves of chimaeric transgenic plant revealed that more than one cell formed leaf primordium at the initial stage, and filial cells stemed from each cell in leaf primordium arranged in a row longitudinally from leaf base to leaf apex. There was a clear boundary as a straight line between the area formed by transformed cells and the area formed by normal cells. A hypothesis was put forward that the primitive cells in leaf primordium divided in a longitudinal style, resulted in leaf elongation, then the filial cells divided transversally and synchronously toward the outside to broaden the leaf.


Chimaeric transgenic plant Beta-glucuronidase gene Leaf primordium of maize Multicellular genesis Type-II embryonic calli 



This work was supported by National Natural Science Foundation of China (Grant number 30870194), Natural Science Foundation of Shaanxi Province (Grant number 2006C103), Research Project of Educational Department of Shaanxi Province (Grant number 08JK466) and Research Project of Provincial Key Laboratory of Shaanxi (Grant number 08JZ70).


  1. 1.
    Kessler S, Townsley B, Sinha N (2006) L1 division and differentiation patterns influence shoot apical meristem maintenance. Plant Physiol 141:1349–1362. doi: 10.1104/pp.105.076075 CrossRefPubMedGoogle Scholar
  2. 2.
    Reinhardt D, Frenz M, Mandel T, Kuhlemeier C (2003) Microsurgical and laser ablation analysis of interactions between the zones and layers of the tomato shoot apical meristem. Development 130:4073–4083. doi: 10.1242/dev.00596 CrossRefPubMedGoogle Scholar
  3. 3.
    Abe M, Katsumata H, Komeda Y, Takahashi T (2003) Regulation of shoot epidermal cell differentiation by a pair of homeodomain proteins in Arabidopsis. Development 130:635–643. doi: 10.1242/dev.00292 CrossRefPubMedGoogle Scholar
  4. 4.
    Poethig RS, Szymkowiak EJ (1995) Clonal analysis of leaf development in maize. Maydica 40:67–76Google Scholar
  5. 5.
    Juarez MT, Twigg RW, Timmermans MCP (2004) Specification of adaxial cell fate during maize leaf development. Development 131:4533–4544. doi: 10.1242/dev.01328 CrossRefPubMedGoogle Scholar
  6. 6.
    Cahoon AB, Takacs EM, Sharpe RM, Stern DB (2008) Nuclear, chloroplast, and mitochondrial transcript abundance along a maize leaf developmental gradient. Plant Mol Biol 66:33–46. doi: 10.1007/s11103-007-9250-z CrossRefPubMedGoogle Scholar
  7. 7.
    Efroni I, Blum E, Goldshmidt A, Eshed Y (2008) A protracted and dynamic maturation schedule underlies Arabidopsis leaf development. Plant Cell 20:2293–2306. doi: 10.1105/tpc.107.057521 CrossRefPubMedGoogle Scholar
  8. 8.
    Janošević D, Uzelac B, Stojičić D, Budimir S (2007) Developmental anatomy of cotyledons and leaves in has mutant of Arabidopsis thaliana. Protoplasma 231:7–13. doi: 10.1007/s00709-007-0246-y CrossRefPubMedGoogle Scholar
  9. 9.
    Carabelli M, Possenti M, Sessa G, Ciolfi A, Sassi M, Morelli G, Ruberti I (2007) Canopy shade causes a rapid and transient arrest in leaf development through auxin-induced cytokinin oxidase activity. Genes Dev 21:1863–1868. doi: 10.1101/gad.432607 CrossRefPubMedGoogle Scholar
  10. 10.
    Xu L, Yang L, Huang H (2007) Transcriptional, post-transcriptional and post-translational regulations of gene expression during leaf polarity formation. Cell Res 17:512–519. doi: 10.1038/cr.2007.45 CrossRefPubMedGoogle Scholar
  11. 11.
    Peaucelle A, Morin H, Traas J, Laufs P (2007) Plants expressing a miR164-resistant CUC2 gene reveal the importance of post-meristematic maintenance of phyllotaxy in Arabidopsis. Development 134:1045–1050. doi: 10.1242/dev.02774 CrossRefPubMedGoogle Scholar
  12. 12.
    Kidner CA, Timmermans MC (2007) Mixing and matching pathways in leaf polarity. Curr Opin Plant Biol 10:13–20. doi: 10.1016/j.pbi.2006.11.013 CrossRefPubMedGoogle Scholar
  13. 13.
    Juarez MT, Kui JS, Thomas J, Heller BA, Timmermans MC (2004) MicroRNA-mediated repression of rolled leaf1 specifies maize leaf polarity. Nature 428:84–88. doi: 10.1038/nature02363 CrossRefPubMedGoogle Scholar
  14. 14.
    Golz JF, Roccaro M, Kuzoff R, Hudson A (2004) GRAMINIFOLIA promotes growth and polarity of Antirrhinum leaves. Development 131:3661–3670. doi: 10.1242/dev.01221 CrossRefPubMedGoogle Scholar
  15. 15.
    Kessler S, Sinha N (2004) Shaping up: the genetic control of leaf shape. Curr Opin Plant Biol 7:65–72. doi: 10.1016/j.pbi.2003.11.002 CrossRefPubMedGoogle Scholar
  16. 16.
    Zimmermann R, Werr W (2005) Pattern formation in the monocot embryo as revealed by NAM and CUC3 orthologues from Zea mays L. Plant Mol Biol 58:669–685. doi: 10.1007/s11103-005-7702-x CrossRefPubMedGoogle Scholar
  17. 17.
    Long J, Barton MK (2000) Initiation of axillary and floral meristems in Arabidopsis. Dev Biol 218:341–353. doi: 10.1006/dbio.1999.9572 CrossRefPubMedGoogle Scholar
  18. 18.
    Uchida N, Townsley B, Chung KH, Sinha N (2007) Regulation of SHOOT MERISTEMLESS genes via an upstream-conserved noncoding sequence coordinates leaf development. Proc Natl Acad Sci USA 104:15953–15958. doi: 10.1073/pnas.0707577104 CrossRefPubMedGoogle Scholar
  19. 19.
    Zhu Y, Li Z, Xu B, Li H, Wang L, Dong A, Huang H (2008) Subcellular localizations of AS1 and AS2 suggest their common and distinct roles in plant development. J Integr Plant Biol 50:897–905. doi: 10.1111/j.1744-7909.2008.00693.x CrossRefPubMedGoogle Scholar
  20. 20.
    Bowman JL, Eshed Y, Baum SF (2002) Establishment of polarity in angiosperm lateral organs. Trends Genet 18:134–141. doi: 10.1016/S0168-9525(01)02601-4 CrossRefPubMedGoogle Scholar
  21. 21.
    Murashige T, Skoog F (1962) A revised medium for rapid growth and bioassays with tobacco tissue cultures. Physiol Plant 15:473–479. doi: 10.1111/j.1399-3054.1962.tb08052.x CrossRefGoogle Scholar
  22. 22.
    Chu CC, Wang CC, Sun CS, Hsu C, Yin KC, Chu CY, Bi FY (1975) Establishment of an efficient medium for anther culture of rice through comparative experiments on the nitrogen sources. Sci Sin 18:659–668Google Scholar
  23. 23.
    McElroy D, Zhang W, Cao J, Wu R (1990) Isolation of an efficient actin promoter for use in rice transformation. Plant Cell 2:163–171CrossRefPubMedGoogle Scholar
  24. 24.
    Brettschneider R, Becker D, Lörz H (1997) Efficient transformation of scutellar tissue of immature maize embryos. Theor Appl Genet 94:737–748. doi: 10.1007/s001220050473 CrossRefGoogle Scholar
  25. 25.
    Jefferson RA, Kavanagh TA, Bevan MW (1987) GUS fusion: β-glucuronidase as a sensitive and versatile gene fusion marker in higher plants. EMBO J 6:3901–3907PubMedGoogle Scholar
  26. 26.
    Labunskaia EA, Zhigalova TV, Chub VV (2007) Leaf anatomy of the mosaic Ficus benjamina cv. Starlight and interaction of source and sink chimera components. Ontogenez 38:471–480PubMedGoogle Scholar
  27. 27.
    Scanlon MJ, Freeling M (1997) Clonal sectors reveal that a specific meristematic domain is not utilized in the maize mutant narrow sheath. Dev Biol 182:52–66. doi: 10.1006/dbio.1996.8452 CrossRefPubMedGoogle Scholar
  28. 28.
    Nelson T, Langdale JA (1989) Patterns of leaf development in C4 plants. Plant Cell 1:3–13CrossRefPubMedGoogle Scholar
  29. 29.
    Walker KL, Smith LG (2002) Investigation of the role of cell–cell interactions in division plane determination during maize leaf development through mosaic analysis of the tangled mutation. Development 129:3219–3226PubMedGoogle Scholar
  30. 30.
    Smith LG, Hake S, Sylvester AW (1996) The tangled1 mutation alters cell division orientations throughout maize leaf development without altering leaf shape. Development 122:481–489PubMedGoogle Scholar
  31. 31.
    Kessler S, Seiki S, Sinha N (2002) Xcl1 causes delayed oblique periclinal cell divisions in developing maize leaves, leading to cellular differentiation by lineage instead of position. Development 129:1859–1869PubMedGoogle Scholar
  32. 32.
    Zhang X, Madi S, Borsuk L, Nettleton D, Elshire RJ, Buckner B, Janick-Buckner D, Beck J, Timmermans M, Schnable PS, Scanlon MJ (2007) Laser microdissection of narrow sheath mutant maize uncovers novel gene expression in the shoot apical meristem. PLoS Genet 3(6):e101. doi: 10.1371/journal.pgen.0030101 CrossRefPubMedGoogle Scholar
  33. 33.
    Evans MMS (2007) The indeterminate gametophyte1 gene of maize encodes a LOB domain protein required for embryo sac and leaf development. Plant Cell 19:46–62. doi: 10.1105/tpc.106.047506 CrossRefPubMedGoogle Scholar
  34. 34.
    Songstad DD, Petersen WL, Armstrong CL (1992) Establishment of friable embryogenic (Type II) callus from immature tassels of Zea mays (Poaceae). Am J Bot 79:761–764. doi: 10.2307/2444941 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2009

Authors and Affiliations

  • Zi-Qin Xu
    • 1
    Email author
  • Xuan Huang
    • 1
  • Chao Feng
    • 1
  • Na Tian
    • 1
  • Dan Xu
    • 1
  • Shu-Zhen Feng
    • 1
  1. 1.Provincial Key Laboratory of Biotechnology, Institute of Life ScienceNorthwest UniversityXianChina

Personalised recommendations