Molecular Biology Reports

, Volume 37, Issue 7, pp 3199–3205

An examination of aspartate decarboxylase and glutamate decarboxylase activity in mosquitoes

  • Graham Richardson
  • Haizhen Ding
  • Tom Rocheleau
  • George Mayhew
  • Erin Reddy
  • Qian Han
  • Bruce M. Christensen
  • Jianyong Li
Article

Abstract

A major pathway of beta-alanine synthesis in insects is through the alpha-decarboxylation of aspartate, but the enzyme involved in the decarboxylation of aspartate has not been clearly defined in mosquitoes and characterized in any insect species. In this study, we expressed two putative mosquito glutamate decarboxylase-like enzymes of mosquitoes and critically analyzed their substrate specificity and biochemical properties. Our results provide clear biochemical evidence establishing that one of them is an aspartate decarboxylase and the other is a glutamate decarboxylase. The mosquito aspartate decarboxylase functions exclusively on the production of beta-alanine with no activity with glutamate. Likewise the mosquito glutamate decarboxylase is highly specific to glutamate with essentially no activity with aspartate. Although insect aspartate decarboxylase shares high sequence identity with glutamate decarboxylase, we are able to closely predict aspartate decarboxylase from glutamate decarboxylase based on the difference of their active site residues.

Keywords

Aspartate decarboxylase Glutamate decarboxylase Mosquito Beta-alanine Cuticle tanning 

Abbreviations

ADC

Aspartate decarboxylase

GAD

Glutamate decarboxylase

GABA

γ-Amino butyric acid

NBAD

N-β-Alanyl dopamine

PLP

Pyridoxal-5′-phosphate

OPT

o-Phthaldialdehyde thiol

References

  1. 1.
    Wright TR (1987) The genetics of biogenic amine metabolism, sclerotization, and melanization in Drosophila melanogaster. Adv Genet 24:127–222CrossRefPubMedGoogle Scholar
  2. 2.
    Phillips AM, Smart R, Strauss R, Brembs B, Kelly LE (2005) The Drosophila black enigma: the molecular and behavioural characterization of the black1 mutant allele. Gene 351:131–142CrossRefPubMedGoogle Scholar
  3. 3.
    Hodgetts RB (1972) Biochemical characterization of mutants affecting the metabolism of alanine in Drosophila. J Insect Physiol 18:937–947CrossRefPubMedGoogle Scholar
  4. 4.
    Gavin BA, Arruda SE, Dolph PJ (2007) The role of carcinine in signaling at the Drosophila photoreceptor synapse. PLoS Genet 3:e206CrossRefPubMedGoogle Scholar
  5. 5.
    Jacobs ME (1974) Beta-alanine and adaptation in Drosophila. J Insect Physiol 20:859–866CrossRefPubMedGoogle Scholar
  6. 6.
    Hodgetts R, Choi A (1974) Beta alanine and cuticle maturation in Drosophila. Nature 252:710–711CrossRefPubMedGoogle Scholar
  7. 7.
    Urabe K, Aroca P, Tsukamoto K, Mascagna D, Palumbo A, Prota G, Hearing VJ (1994) The inherent cytotoxicity of melanin precursors: a revision. Biochim Biophys Acta 1221:272–278CrossRefPubMedGoogle Scholar
  8. 8.
    Yuneva AO, Kramarenko GG, Vetreshchak TV, Gallant S, Boldyrev AA (2002) Effect of carnosine on Drosophila melanogaster lifespan. Bull Exp Biol Med 133:559–561CrossRefPubMedGoogle Scholar
  9. 9.
    Chude O, Roberts E, Wu JY (1979) Partial purification of Drosophila glutamate decarboxylase. J Neurochem 32:1409–1415CrossRefPubMedGoogle Scholar
  10. 10.
    Phillips AM, Salkoff LB, Kelly LE (1993) A neural gene from Drosophila melanogaster with homology to vertebrate and invertebrate glutamate decarboxylases. J Neurochem 61:1291–1301CrossRefPubMedGoogle Scholar
  11. 11.
    Arakane Y, Lomakin J, Beeman RW, Muthukrishnan S, Gehrke SH, Kanost MR, Kramer KJ (2009) Molecular and functional analyses of amino acid decarboxylases involved in cuticle tanning in Tribolium castaneum. J Biol Chem 284:16584–16594CrossRefPubMedGoogle Scholar
  12. 12.
    Neuser K, Triphan T, Mronz M, Poeck B, Strauss R (2008) Analysis of a spatial orientation memory in Drosophila. Nature 453:1244–1247CrossRefPubMedGoogle Scholar
  13. 13.
    Kolodziejczyk A, Sun X, Meinertzhagen IA, Nassel DR (2008) Glutamate, GABA and acetylcholine signaling components in the lamina of the Drosophila visual system. PLoS One 3:e2110CrossRefPubMedGoogle Scholar
  14. 14.
    Han Q, Fang J, Li J (2001) Kynurenine aminotransferase and glutamine transaminase K of Escherichia coli: identity with aspartate aminotransferase. Biochem J 360:617–623CrossRefPubMedGoogle Scholar
  15. 15.
    Bu DF, Erlander MG, Hitz BC, Tillakaratne NJ, Kaufman DL, Wagner-McPherson CB, Evans GA, Tobin AJ (1992) Two human glutamate decarboxylases, 65-kDa GAD and 67-kDa GAD, are each encoded by a single gene. Proc Natl Acad Sci USA 89:2115–2119CrossRefPubMedGoogle Scholar
  16. 16.
    Huang WM, Reed-Fourquet L, Wu E, Wu JY (1990) Molecular cloning and amino acid sequence of brain l-glutamate decarboxylase. Proc Natl Acad Sci USA 87:8491–8495CrossRefPubMedGoogle Scholar
  17. 17.
    Asada H, Kawamura Y, Maruyama K, Kume H, Ding RG, Kanbara N, Kuzume H, Sanbo M, Yagi T, Obata K (1997) Cleft palate and decreased brain gamma-aminobutyric acid in mice lacking the 67-kDa isoform of glutamic acid decarboxylase. Proc Natl Acad Sci USA 94:6496–6499CrossRefPubMedGoogle Scholar
  18. 18.
    Asada H, Kawamura Y, Maruyama K, Kume H, Ding R, Ji FY, Kanbara N, Kuzume H, Sanbo M, Yagi T, Obata K (1996) Mice lacking the 65 kDa isoform of glutamic acid decarboxylase (GAD65) maintain normal levels of GAD67 and GABA in their brains but are susceptible to seizures. Biochem Biophys Res Commun 229:891–895CrossRefPubMedGoogle Scholar
  19. 19.
    Jackson FR, Newby LM, Kulkarni SJ (1990) Drosophila GABAergic systems: sequence and expression of glutamic acid decarboxylase. J Neurochem 54:1068–1078CrossRefPubMedGoogle Scholar
  20. 20.
    Stuart AE, Borycz J, Meinertzhagen IA (2007) The dynamics of signaling at the histaminergic photoreceptor synapse of arthropods. Prog Neurobiol 82:202–227CrossRefPubMedGoogle Scholar
  21. 21.
    True JR, Yeh SD, Hovemann BT, Kemme T, Meinertzhagen IA, Edwards TN, Liou SR, Han Q, Li J (2005) Drosophila tan encodes a novel hydrolase required in pigmentation and vision. PLoS Genet 1:e63CrossRefPubMedGoogle Scholar
  22. 22.
    Suh J, Jackson FR (2007) Drosophila ebony activity is required in glia for the circadian regulation of locomotor activity. Neuron 55:435–447CrossRefPubMedGoogle Scholar
  23. 23.
    Fenalti G, Law RH, Buckle AM, Langendorf C, Tuck K, Rosado CJ, Faux NG, Mahmood K, Hampe CS, Banga JP, Wilce M, Schmidberger J, Rossjohn J, El-Kabbani O, Pike RN, Smith AI, Mackay IR, Rowley MJ, Whisstock JC (2007) GABA production by glutamic acid decarboxylase is regulated by a dynamic catalytic loop. Nat Struct Mol Biol 14:280–286CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2009

Authors and Affiliations

  • Graham Richardson
    • 1
  • Haizhen Ding
    • 1
  • Tom Rocheleau
    • 2
  • George Mayhew
    • 2
  • Erin Reddy
    • 2
  • Qian Han
    • 1
  • Bruce M. Christensen
    • 2
  • Jianyong Li
    • 1
  1. 1.Department of BiochemistryVirginia TechBlacksburgUSA
  2. 2.Department of Pathobiological SciencesUniversity of WisconsinMadisonUSA

Personalised recommendations