Molecular Biology Reports

, Volume 37, Issue 7, pp 3121–3125

SDF1-3′ G801A polymorphisms in Polish patients with systemic lupus erythematosus

  • Teresa Warchoł
  • Margarita Lianeri
  • Jan K. Łącki
  • Paweł P. Jagodziński
Article

Abstract

It has been reported that stromal cell-derived factor-1 (SDF1), currently also designated CXCL12, plays a significant role in the development of nephritis and death in the lupus mice model. Using restriction length fragment polymorphism (RFLP) analysis we assessed the frequencies of SDF1-3′ G801A (rs 1801157) polymorphic variants between systemic lupus erythematosus (SLE) patients (n = 150) and controls (n = 300). There were no significant differences in the prevalence of SDF1-3′ G801A polymorphic variants in SLE patients and healthy individuals. However, we observed that the SDF1-3′ A/A and G/A genotypes (recessive model) contributed to renal manifestations of SLE OR = 3.042 (95% CI = 1.527–6.058, P = 0.002), and the p value stayed statistically significant after Bonferroni correction (pcorr = 0.032) in SLE patients. We also found an association of the SDF1-3′ A/A and G/A genotypes (recessive model) with dermal manifestations of SLE OR = 2.510 (95% CI = 1.247–5.052, P = 0.0122), (pcorr = 0.1952) but this did not remain statistically significant after Bonferroni correction. Our observations suggest that the SDF1-3′ G801A genotype may be associated with some clinical manifestations in patients with SLE.

Keywords

Systemic lupus erythematosus SDF1 Polymorphisms 

References

  1. 1.
    Sekigawa I, Naito T, Hira K et al (2004) Possible mechanisms of gender bias in SLE: a new hypothesis involving a comparison of SLE with atopy. Lupus 13:217–222CrossRefPubMedGoogle Scholar
  2. 2.
    Crispín JC, Tsokos GC (2008) Novel molecular targets in the treatment of systemic lupus erythematosus. Autoimmun Rev 7:256–261CrossRefPubMedGoogle Scholar
  3. 3.
    Januchowski R, Wudarski M, Chwalińska-Sadowska H et al (2008) Prevalence of ZAP-70, LAT, SLP-76, and DNA methyltransferase 1 expression in CD4(+) T cells of patients with systemic lupus erythematosus. Clin Rheumatol 27:21–27CrossRefPubMedGoogle Scholar
  4. 4.
    Stohl W, Metyas S, Tan SM et al (2003) B lymphocyte stimulator overexpression in patients with systemic lupus erythematosus: longitudinal observations. Arthritis Rheum 48:3475–3486CrossRefPubMedGoogle Scholar
  5. 5.
    Gröndal G, Gunnarsson I, Rönnelid J et al (2000) Cytokine production, serum levels and disease activity in systemic lupus erythematosus. Clin Exp Rheumatol 18:565–570PubMedGoogle Scholar
  6. 6.
    al-Janadi M, al-Balla S, al-Dalaan A et al (1993) Cytokine profile in systemic lupus erythematosus, rheumatoid arthritis, and other rheumatic diseases. J Clin Immunol 13:58–67CrossRefPubMedGoogle Scholar
  7. 7.
    Jönsen A, Bengtsson AA, Nived O et al (2007) Gene–environment interactions in the aetiology of systemic lupus erythematosus. Autoimmunity 40:613–617CrossRefPubMedGoogle Scholar
  8. 8.
    Love LA (1994) New environmental agents associated with lupus-like disorders. Lupus 3:467–471CrossRefPubMedGoogle Scholar
  9. 9.
    Wong M, Tsao BP (2006) Current topics in human SLE genetics. Springer Semin Immunopathol 28:97–107CrossRefPubMedGoogle Scholar
  10. 10.
    Hom G, Graham RR, Modrek B et al (2008) Association of systemic lupus erythematosus with C8orf13-BLK and ITGAM-ITGAX. N Engl J Med 358:900–909CrossRefPubMedGoogle Scholar
  11. 11.
    International Consortium for Systemic Lupus Erythematosus Genetics (SLEGEN), Harley JB, Alarcón-Riquelme ME, Criswell LA et al (2008) Genome-wide association scan in women with systemic lupus erythematosus identifies susceptibility variants in ITGAM, PXK, KIAA1542 and other loci. Nat Genet 40:204–210CrossRefPubMedGoogle Scholar
  12. 12.
    Moser B, Loetscher P (2001) Lymphocyte traffic control by chemokines. Nat Immunol 2:123–128CrossRefPubMedGoogle Scholar
  13. 13.
    Zlotnik A, Yoshie O (2000) Chemokines: a new classification system and their role in immunity. Immunity 12:121–127CrossRefPubMedGoogle Scholar
  14. 14.
    Zou YR, Kottmann AH, Kuroda M et al (1998) Function of the chemokine receptor CXCR4 in a haematopoiesis and in cerebellar development. Nature 393:595–599CrossRefPubMedGoogle Scholar
  15. 15.
    Onai N, Zhang Y, Yoneyama H et al (2000) Impairment of lymphopoiesis and myelopoiesis in mice reconstituted with bone marrow-hematopoietic progenitor cells expressing SDF-1-intrakine. Blood 96:2074–2080PubMedGoogle Scholar
  16. 16.
    Herzenberg LA (2000) B-1 cells: the lineage question revisited. Immunol Rev 175:9–22CrossRefPubMedGoogle Scholar
  17. 17.
    Balabanian K, Couderc J, Bouchet-Delbos L et al (2003) Role of the chemokine stromal cell-derived factor 1 in autoantibody production and nephritis in murine lupus. J Immunol 170:3392–3400PubMedGoogle Scholar
  18. 18.
    Winkler C, Modi W, Smith MW et al (1998) Genetic restriction of AIDS pathogenesis by an SDF-1 chemokine gene variant. Science 279:389–393CrossRefPubMedGoogle Scholar
  19. 19.
    Watanabe MA, de Oliveira Cavassin GG, Orellana MD et al (2003) SDF-1 gene polymorphisms and syncytia induction in Brazilian HIV-1 infected individuals. Microb Pathog 35:31–34CrossRefPubMedGoogle Scholar
  20. 20.
    Tan EM, Cohen AS, Fries JF et al (1982) The 1982 revised criteria for the classification of systemic lupus erythematosus. Arthritis Rheum 25:1271–1277CrossRefPubMedGoogle Scholar
  21. 21.
    Hochberg MC (1997) Updating the American College of Rheumatology revised criteria for the classification of systemic lupus erythematosus. Arthritis Rheum 40:1725CrossRefPubMedGoogle Scholar
  22. 22.
    International HapMap Consortium, Frazer KA, Ballinger DG, Cox DR et al (2007) A second generation human haplotype map of over 3.1 million SNPs. Nature 449:851–861CrossRefPubMedGoogle Scholar
  23. 23.
    Shirozu M, Nakano T, Inazawa J et al (1995) Structure and chromosomal localization of the human stromal cell-derived factor 1 (SDF1) gene. Genomics 28:495–500CrossRefPubMedGoogle Scholar
  24. 24.
    Bleul CC, Fuhlbrigge RC, Casasnovas JM et al (1996) A highly efficacious lymphocyte chemoattractant, stromal cell-derived factor 1 (SDF-1). J Exp Med 184:1101–1109CrossRefPubMedGoogle Scholar
  25. 25.
    Yong K, Fahey A, Reeve L et al (1999) Cord blood progenitor cells have greater transendothelial migratory activity and increased responses to SDF-1 and MIP-3beta compared with mobilized adult progenitor cells. Br J Haematol 107:441–449CrossRefPubMedGoogle Scholar
  26. 26.
    Hamada T, Möhle R, Hesselgesser J et al (1998) Transendothelial migration of megakaryocytes in response to stromal cell-derived factor 1 (SDF-1) enhances platelet formation. J Exp Med 188:539–548CrossRefPubMedGoogle Scholar
  27. 27.
    McGrath KE, Koniski AD, Maltby KM et al (1999) Embryonic expression and function of the chemokine SDF-1 and its receptor, CXCR4. Dev Biol 213:442–456CrossRefPubMedGoogle Scholar
  28. 28.
    Teng YH, Liu TH, Tseng HC et al (2009) Contribution of genetic polymorphisms of stromal cell-derived factor-1 and its receptor, CXCR4, to the susceptibility and clinicopathologic development of oral cancer. Head Neck. doi:10.1002/hed.21094
  29. 29.
    Khademi B, Razmkhah M, Erfani N et al (2008) SDF-1 and CCR5 genes polymorphism in patients with head and neck cancer. Pathol Oncol Res 14:45–50CrossRefPubMedGoogle Scholar
  30. 30.
    de Oliveira Cavassin GG, De Lucca FL, Delgado Andre N et al (2004) Molecular investigation of the stromal cell-derived factor-1 chemokine in lymphoid leukemia and lymphoma patients from Brazil. Blood Cells Mol Dis 33:90–93CrossRefPubMedGoogle Scholar
  31. 31.
    Razmkhah M, Talei AR, Doroudchi M et al (2004) Stromal cell-derived factor-1 (SDF-1) alleles and susceptibility to breast carcinoma. Cancer Lett 225:261–266CrossRefPubMedGoogle Scholar
  32. 32.
    Razmkhah M, Doroudchi M, Ghayumi SM et al (2005) Stromal cell-derived factor-1 (SDF-1) gene and susceptibility of Iranian patients with lung cancer. Lung Cancer 49:311–315CrossRefPubMedGoogle Scholar
  33. 33.
    Hirata H, Hinoda Y, Kikuno N et al (2007) CXCL12 G801A polymorphism is a risk factor for sporadic prostate cancer susceptibility. Clin Cancer Res 13:5056–5062CrossRefPubMedGoogle Scholar
  34. 34.
    Schröppel B, Fischereder M, Ashkar R et al (2002) The impact of polymorphisms in chemokine and chemokine receptors on outcomes in liver transplantation. Am J Transplant 2:640–645CrossRefPubMedGoogle Scholar
  35. 35.
    Manetti M, Liakouli V, Fatini C et al (2009) Association between a stromal cell-derived factor 1 (SDF-1/CXCL12) gene polymorphism and microvascular disease in systemic sclerosis. Ann Rheum Dis 68:408–411CrossRefPubMedGoogle Scholar
  36. 36.
    Ide A, Kawasaki E, Abiru N (2003) Stromal-cell derived factor-1 chemokine gene variant is associated with type 1 diabetes age at onset in Japanese population. Hum Immunol 64:973–978CrossRefPubMedGoogle Scholar
  37. 37.
    Lima G, Soto-Vega E, Atisha-Fregoso Y et al (2007) Llorente LMCP-1, RANTES, and SDF-1 polymorphisms in Mexican patients with systemic lupus erythematosus. Hum Immunol 68:980–985CrossRefPubMedGoogle Scholar
  38. 38.
    Bleul CC, Farzan M, Choe H et al (1996) The lymphocyte chemoattractant SDF-1 is a ligand for LESTR/fusin and blocks HIV-1 entry. Nature 382:829–833CrossRefPubMedGoogle Scholar
  39. 39.
    Robak E, Kulczycka L, Sysa-Jedrzejowska A et al (2007) Circulating proangiogenic molecules PIGF, SDF-1 and sVCAM-1 in patients with systemic lupus erythematosus. Eur Cytokine Netw 18:181–187PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2009

Authors and Affiliations

  • Teresa Warchoł
    • 1
  • Margarita Lianeri
    • 1
  • Jan K. Łącki
    • 2
  • Paweł P. Jagodziński
    • 1
  1. 1.Department of Biochemistry and Molecular BiologyPoznan University of Medical SciencesPoznanPoland
  2. 2.Institute of RheumatologyWarsawPoland

Personalised recommendations