Molecular Biology Reports

, Volume 37, Issue 6, pp 2809–2816

ΦC31 integrase interacts with TTRAP and inhibits NFκB activation



Phage ΦC31 integrase-mediated gene delivery is believed to be safer than using retroviral vectors since the protein confines its insertion of the target gene to a limited number of sites in mammalian genomes. To evaluate its safety in human cells, it is important to understand the interactions between this integrase and cellular proteins. Here we show that ΦC31 integrase interacts with TTRAP as presented by yeast two-hybrid and co-immunoprecipitation assays. Reducing the expression of endogenous TTRAP can increase the efficiency of ΦC31 integrase-mediated integration. A possible effect of interaction between ΦC31 integrase and TTRAP was highlighted by the fact that ΦC31 integrase inhibited the NFκB activation mediated by IL-1 in a dose-dependent manner. Because low dose of ΦC31 integrase can mediate considerable recombination events, we suggest that low dose of ΦC31 integrase be used when this integrase is applied in human cells.


ΦC31 integrase TTRAP NFκB 


  1. 1.
    Hacein-Bey-Abina S, von Kalle C, Schmidt M, Le Deist F, Wulffraat N, McIntyre E, Radford I, Villeval JL, Fraser CC, Cavazzana-Calvo M, Fischer A (2003) A serious adverse event after successful gene therapy for X-linked severe combined immunodeficiency. N Engl J Med 348:255–256CrossRefPubMedGoogle Scholar
  2. 2.
    Groth AC, Olivares EC, Thyagarajan B, Calos MP (2000) A phage integrase directs efficient site-specific integration in human cells. Proc Natl Acad Sci USA 97:5995–6000CrossRefPubMedGoogle Scholar
  3. 3.
    Kuhstoss S, Rao RN (1991) Analysis of the integration function of the Streptomycete bacteriophage-phi-C31. J Mol Biol 222:897–908CrossRefPubMedGoogle Scholar
  4. 4.
    Smith MCM, Thorpe HM (2002) Diversity in the serine recombinases. Mol Microbiol 44:299–307CrossRefPubMedGoogle Scholar
  5. 5.
    Thorpe HM, Smith MCM (1998) In vitro site-specific integration of bacteriophage DNA catalyzed by a recombinase of the resolvase/invertase family. Proc Natl Acad Sci USA 95:5505–5510CrossRefPubMedGoogle Scholar
  6. 6.
    Chalberg TW, Portlock JL, Olivares EC, Thyagarajan B, Kirby PJ, Hillman RT, Hoelters J, Calos MP (2006) Integration specificity of phage phi C31 integrase in the human genome. J Mol Biol 357:28–48CrossRefPubMedGoogle Scholar
  7. 7.
    Belteki G, Gertsenstein M, Ow DW, Nagy A (2003) Site-specific cassette exchange and germline transmission with mouse ES cells expressing phi C31 integrase. Nat Biotechnol 21:321–324CrossRefPubMedGoogle Scholar
  8. 8.
    Calos MP (2006) The phi C31 integrase system for gene therapy. Curr Gene Ther 6:633–645CrossRefPubMedGoogle Scholar
  9. 9.
    Groth AC, Fish M, Nusse R, Calos MP (2004) Construction of transgenic Drosophila by using the site-specific integrase from phage phi C31. Genetics 166:1775–1782CrossRefPubMedGoogle Scholar
  10. 10.
    Thyagarajan B, Olivares EC, Hollis RP, Ginsburg DS, Calos MP (2001) Site-specific genomic integration in mammalian cells mediated by phage phi C31 integrase. Mol Cell Biol 21:3926–3934CrossRefPubMedGoogle Scholar
  11. 11.
    Gupta M, Till R, Smith MCM (2007) Sequences in attB that affect the ability of theta C31 integrase to synapse and to activate DNA cleavage. Nucleic Acids Res 35:3407–3419CrossRefPubMedGoogle Scholar
  12. 12.
    Rowley PA, Smith MCA, Younger E, Smith MCM (2008) A motif in the C-terminal domain of phiC31 integrase controls the directionality of recombination. Nucleic Acids Res 36:3879–3891CrossRefPubMedGoogle Scholar
  13. 13.
    Smith MCA, Till R, Brady K, Soultanas P, Thorpe H, Smith MCM (2004) Synapsis and DNA cleavage in phi C31 integrase-mediated site-specific recombination. Nucleic Acids Res 32:2607–2617CrossRefPubMedGoogle Scholar
  14. 14.
    Ehrhardt A, Yant SR, Giering JC, Xu H, Engler JA, Kay MA (2007) Somatic integration from an adenoviral hybrid vector into a hot spot in mouse liver results in persistent transgene expression levels in vivo. Mol Ther 15:146–156CrossRefPubMedGoogle Scholar
  15. 15.
    Olivares EC, Hollis RP, Chalberg TW, Meuse L, Kay MA, Calos MP (2002) Site-specific genomic integration produces therapeutic factor IX levels in mice. Nat Biotechnol 20:1124–1128CrossRefPubMedGoogle Scholar
  16. 16.
    Quenneville SP, Chapdelaine P, Rousseau J, Beaulieu J, Caron NJ, Skuk D, Mills P, Olivares EC, Calos MP, Tremblay JP (2004) Nucleofection of muscle-derived stem cells and myoblasts with phi C31 integrase: stable expression of a full-length-dystrophin fusion gene by human myoblasts. Mol Ther 10:679–687CrossRefPubMedGoogle Scholar
  17. 17.
    Thyagarajan B, Liu Y, Shin S, Lakshmipathy U, Scheyhing K, Xue H, Ellerstrom C, Strehl R, Hyllner J, Rao MS, Chesnut JD (2008) Creation of engineered human embryonic stem cell lines using phiC31 integrase. Stem Cells 26:119–126CrossRefPubMedGoogle Scholar
  18. 18.
    Ehrhardt A, Engler JA, Xu H, Cherry AM, Kay MA (2006) Molecular analysis of chromosomal rearrangements in mammalian cells after phi C31-mediated integration. Hum Gene Ther 17:1077–1094CrossRefPubMedGoogle Scholar
  19. 19.
    Liu J, Jeppesen I, Nielsen K, Jensen TG (2006) Phi c31 integrase induces chromosomal aberrations in primary human fibroblasts. Gene Ther 13:1188–1190CrossRefPubMedGoogle Scholar
  20. 20.
    Chen JZ, Ji CN, Xu GL, Pang RY, Yao JH, Zhu HZ, Xue JL, Jia W (2006) DAXX interacts with phage phi C31 integrase and inhibits recombination. Nucleic Acids Res 34:6298–6304CrossRefPubMedGoogle Scholar
  21. 21.
    Gao J, Duan B, Wang DG, Deng XH, Zhang GY, Xu L, Xu TL (2005) Coupling between NMDA receptor and acid-sensing ion channel contributes to ischemic neuronal death. Neuron 48:635–646CrossRefPubMedGoogle Scholar
  22. 22.
    Pype S, Declercq W, Ibrahimi A, Michiels C, Van Rietschoten JGI, Dewulf N, de Boer M, Vandenabeele P, Huylebroeck D, Remacle JE (2000) TTRAP, a novel protein that associates with CD40, tumor necrosis factor (TNF) receptor-75 and TNF receptor-associated factors (TRAFs) and that inhibits nuclear factor-kappa B activation. J Biol Chem 275:18586–18593CrossRefPubMedGoogle Scholar
  23. 23.
    Pei HP, Yordy JS, Leng QX, Zhao QH, Watson DK, Li RZ (2003) EAPII interacts with ETS1 and modulates its transcriptional function. Oncogene 22:2699–2709CrossRefPubMedGoogle Scholar
  24. 24.
    Andreas S, Schwenk F, Kuter-Luks B, Faust N, Kuhn R (2002) Enhanced efficiency through nuclear localization signal fusion on phage phi C31-integrase: activity comparison with Cre and FLPe recombinase in mammalian cells. Nucleic Acids Res 30:2299–2306CrossRefPubMedGoogle Scholar
  25. 25.
    Xu GL, Pan YK, Wang BY, Huang L, Tian L, Xue JL, Chen JZ, Jia W (2008) TTRAP is a novel PML nuclear bodies-associated protein. Biochem Biophys Res Commun 375:395–398CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2009

Authors and Affiliations

  • Bing-yin Wang
    • 1
  • Guan-lan Xu
    • 1
  • Cai-hong Zhou
    • 1
  • Ling Tian
    • 1
  • Jing-lun Xue
    • 1
  • Jin-zhong Chen
    • 1
  • William Jia
    • 1
    • 2
  1. 1.State Key Laboratory of Genetic Engineering, Institute of Genetics, School of Life SciencesFudan UniversityShanghaiChina
  2. 2.Department of SurgeryUniversity of British ColumbiaVancouverCanada

Personalised recommendations