Molecular Biology Reports

, Volume 37, Issue 1, pp 553–562 | Cite as

Phylogenetic analysis of 16S rRNA gene sequences reveals rumen bacterial diversity in Yaks (Bos grunniens)

  • L. Y. Yang
  • J. Chen
  • X. L. Cheng
  • D. M. Xi
  • S. L. Yang
  • W. D. Deng
  • H. M. Mao


Six matured male Yaks (Bos grunniens) with a mean live weight of 450 ± 23 kg (mean ± SD), were housed indoors in metabolism cages and fed pelleted lucerne (Medicago sativum). After an adjustment period of 24 days of feeding the diet, samples of rumen content were obtained for analysis of the bacteria in the liquor. The diversity of rumen bacteria was investigated by constructing a 16S rRNA gene clone library using the general bacterial primers F27 and R1492. A total of 130 clones, comprising nearly full length sequences (approx. 1.5 kb) were sequenced and submitted to BLAST and phylogenetic analysis. Using the criterion that similarity of 97% or greater with the sequences of cultivated bacteria, 16 clones were identified as Butyrivibrio fibrisolvens, Pseudobutyrivibrio ruminis, Ruminococcus flavefaciens, Succiniclasticum ruminis, Selenomonas ruminantium and Prevotella ruminicola, respectively. A further 10 clones shared similarity ranging from 90 to 97% with cultivated bacteria but the similarity in sequences for the remaining 104 clones were less than 90% of those of cultivated bacteria. Using a phylogenetic analysis it was found that the majority of the clones identified (63.8%) were located in the Low G + C Subdivision, with most of the remainder (35.4% of clones) located in the Cytophaga-Flexibacter-Bacteroides phylum and one clone (0.8%) was identified as a Proteobacteria. It was apparent that Yaks have a large and diverse range of bacteria in the rumen content which differ from those of cattle and other ruminants.


Yaks Rumen bacteria 16S rRNA gene Phylogenetic analysis 



The financial supports provided by the Yunnan Provincial Natural Science Fund (2005C0038 M), the Young Scientist Research Fund of Yunnan Provincial Education Commission (06Y052B) and the “863” Key Program (2008AA101001) are acknowledged with gratitude.


  1. 1.
    An D, Dong X, Dong Z (2005) Prokaryote diversity in the rumen of yak (Bos grunniens) and Jinnan cattle (Bos taurus) estimated by 16S rDNA homology analyses. Anaerobe 11:207–215CrossRefPubMedGoogle Scholar
  2. 2.
    Sasaki M (1994) Yak: Hardy multi-purpose animal of Asia highland. Pages 1–5 in proceedings of 1st international congress Yak, Lanzhou, China. Supplement of Journal of Gansu Agricultural University, Lanzhou, ChinaGoogle Scholar
  3. 3.
    Wiener G, Han JL, Long RJ (2003) Origins, domestication and distribution of yak, and production characteristics of yak, 2nd edn. Regional Office for Asia and the Pacific of the Food and Agriculture Organization of the United Nations, Bangkok, Thailand Pages 2, 136–137 in The YakGoogle Scholar
  4. 4.
    Van Soest PJ (1994) Nutritional ecology of the ruminant, 2nd edn. Cornell University Press, Ithaca, New YorkGoogle Scholar
  5. 5.
    Krause DO, Russell JB (1996) How many ruminal bacteria are there? J Dairy Sci 79:1467–1475PubMedGoogle Scholar
  6. 6.
    Krause DO, Denman SE, Mackie RI, Morrison M, Rae AL, Attwood GT, McSweeney CS (2003) Opportunities to improve fiber degradation in the rumen: microbiology, ecology, and genomics. FEMS Microbiol Rev 27:663–693CrossRefPubMedGoogle Scholar
  7. 7.
    Shin EC, Cho KM, Lim WJ, Hong SY, An CL, Kim EJ, Kim YK, Choi BR, An JM, Kang JM, Kim H, Yun HD (2004) Phylogenetic analysis of protozoa in the rumen contents of cow based on the 18S rDNA sequences. J Appl Microbiol 97:378–383CrossRefPubMedGoogle Scholar
  8. 8.
    Zoetendal EG, Akkermans AL, Devos WM (1998) Temperature gradient gel electrophoresis analysis of 16S rRNA from human fecal samples reveals stable and host-specific communities of active bacteria. Appl Environ Microbiol 64:3854–3859PubMedGoogle Scholar
  9. 9.
    Koike S, Pan J, Kobayashi Y, Tanaka K (2003) Kinetics of in sacco fiber-attachment of representative ruminal cellulolytic bacteria monitored by competitive PCR. J Dairy Sci 86:1429–1435PubMedGoogle Scholar
  10. 10.
    Stahl DA, Flesher B, Mansfield HR, Montgomery L (1988) Use of phylogenetically-based hybridization probes for studies of rumen microbial ecology. Appl Environ Microbiol 54:1079–1084PubMedGoogle Scholar
  11. 11.
    Sylvester JT, Karnati SKR, Yu Z, Morrison M, Firkins JL (2004) Development of an assay to quantify rumen ciliate protozoal biomass in cows using real-time PCR. J Nutr 134:3378–3384PubMedGoogle Scholar
  12. 12.
    Kocherginskaya SA, Aminov RI, White BA (2001) Analysis of the rumen bacterial diversity under two different diet conditions using denaturing gradient gel electrophoresis, random sequencing, and statistical ecology approaches. Anaerobe 7:119–134CrossRefGoogle Scholar
  13. 13.
    Regensbogenova M, McEwan NR, Javorsky P, Kisidayova S, Michalowski T, Newbold CJ, Hackstein JHP, Pristas P (2004) A re-appraisal of the diversity of the methanogens associated with the rumen ciliates. FEMS Microbiol Lett 238:307–313CrossRefPubMedGoogle Scholar
  14. 14.
    Shin EC, Choi BR, Lim WJ, Hong SY, An CL, Cho KM, Kim YK, An JM, Kang JM, Lee SS, Kim H, Yun HD (2004) Phylogenetic analysis of archaea in three fractions of cow rumen based on the 16S rDNA sequence. Anaerobe 10:313–319CrossRefPubMedGoogle Scholar
  15. 15.
    Deng WD, Xi DM, Mao HM, Wanapat M (2008) The use of molecular techniques based on ribosomal RNA and DNA for rumen microbial ecosystem studies: a review. Mol Biol Rep 35:265–274CrossRefPubMedGoogle Scholar
  16. 16.
    McSweeney CS, Denman SE, Wright ADG, Yu Z (2007) Application of recent DNA/RNA-based techniques in rumen ecology. Asian-Aust J Anim Sci 20:283–294Google Scholar
  17. 17.
    White BA, Cann IKO, Kocherginskaya SA, Amino RI, Thill LA, Mackie RI, Onodera R (1999) Molecular analysis of archaea, bacteria and eucarya communities in the rumen-review. Asian-Aust J Anim Sci 12:129–138Google Scholar
  18. 18.
    Goering HK, Van Soest PJ (1970) Forage fiber analysis (apparatus, reagent, procedures and some application): agric. Handbook no. 379. ARS, USDA, WashingtonGoogle Scholar
  19. 19.
    AOAC (1990) Official methods of analysis, 15th edn. Association of Official Analytical Chemists, Arlington, VirginiaGoogle Scholar
  20. 20.
    Deng WD, Wanapat M, Ma SC, Chen J, Xi DM, He TB, Yang ZF, Mao HM (2007) Phylogenetic analysis of 16S rDNA sequences manifest rumen bacterial diversity in Gayals (Bos frontalis) fed fresh bamboo leaves and twigs (Sinarumdinaria). Asian-Aust J Anim Sci 20:1057–1066Google Scholar
  21. 21.
    Birnboim HC, Doly J (1979) A rapid alkaline extraction procedure for recombinant plasmid DNA. Nucl Acids Res 7:1513–1523CrossRefPubMedGoogle Scholar
  22. 22.
    Maidak BL, Cole JR, Lilburn TG Jr, Saxman CTP, Farris PR, Farris RJ, Garrity GM, Olsen GJ, Schmidt TM, Tiedje JM (2001) The RDP-II (ribosomal database project). Nucl Acids Res 29:173–174CrossRefPubMedGoogle Scholar
  23. 23.
    Madden TL, Tatusov RL, Zhang J (1996) Application of network BLAST server. Meth Enzymol 266:131–141CrossRefPubMedGoogle Scholar
  24. 24.
    Thompson JD, Higgins DG, Gibson TJ (1994) CLUSTAL W improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucl Acids Res 22:4673–4680CrossRefPubMedGoogle Scholar
  25. 25.
    Stackebrandt E, Goebel BM (1994) Taxonomic note: a place for DNA-DNA reassociation and 16S rRNA sequence analysis in the present species definition in bacteriology. Int J Syst Bacteriol 44:846–847CrossRefGoogle Scholar
  26. 26.
    Saitou N, Nei M (1987) The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4:406–425PubMedGoogle Scholar
  27. 27.
    Felsenstein J (1985) Confidence limits on phylogenies: an approach using the bootstrap. Evolution 39:783–791CrossRefGoogle Scholar
  28. 28.
    Paster BJ, Dewhirst FE, Weisburg WG, Fraser GJ, Tordoff LA, Hespell RB, Stanton TB, Zablen L, Woese CR (1991) Phylogenetic analysis of the spirochetes. J Bacteriol 173:6101–6109PubMedGoogle Scholar
  29. 29.
    Good IL (1953) The population frequencies of species and the estimation of population parameters. Biometrika 40:237–264Google Scholar
  30. 30.
    Hughes JB, Hellman JJ, Ricketts TH, Bohannan BJ (2001) Counting the uncountable: statistical approaches to estimating microbial diversity. Appl Environ Microbiol 67:4399–4406CrossRefPubMedGoogle Scholar
  31. 31.
    Tajima K, Aminov RI, Nagamine T, Ogata K, Nakamura M, Matsui H, Benno Y (1999) Rumen bacterial diversity as determined by sequence analysis of 16S rDNA libraries. FEMS Microbiol Ecol 29:159–169CrossRefGoogle Scholar
  32. 32.
    Edwards JE, McEwan NR, Travis AJ, Wallace RJ (2004) 16S rDNA library-based analysis of ruminal bacterial diversity. Antonie Van Leeuwenhoek 86:263–281CrossRefGoogle Scholar
  33. 33.
    Mackie RI, Aminov RI, Hu W, Klieve AV, Ouwerkerk D, Sundset MA, Kamagata Y (2003) Ecology of uncultivated Oscillospira species in the rumen of cattle, sheep, and reindeer as assessed by microscopy and molecular approaches. Appl Environ Microbiol 69:6808–6815CrossRefPubMedGoogle Scholar
  34. 34.
    Villemur R, Lanthier M, Beaudet R, Lépine F (2006) The Desulfitobacterium genus. FEMS Microbiol Rev 30:706–733CrossRefPubMedGoogle Scholar
  35. 35.
    Stewart CS, Flint HJ, Bryant MP (1997) The rumen bacteria. In: Hobson PN, Stewart CS (eds) The rumen microbial ecosystem, 2nd edn. Chapman and Hall, New York, pp 10–72Google Scholar
  36. 36.
    Nelson KE, Zinder SH, Hance I, Burr P, Odongo D, Wasawo D, Odenyo A, Bishop R (2003) Phylogenetic analysis of the microbial populations in the wild herbivore gastrointestinal tract: insights into an unexplored niche. Environ Microbiol 5:1212–1220CrossRefPubMedGoogle Scholar
  37. 37.
    Whitford MF, Forster RJ, Beard CE, Gong J, Teather RM (1998) Phylogenetic analysis of rumen bacteria by comparative sequence analysis of cloned 16S rRNA genes. Anaerobe 4:153–163CrossRefPubMedGoogle Scholar
  38. 38.
    Koike S, Yoshitani S, Kobayashi Y, Tanaka K (2003) Phylogenetic analysis of fiber-associated rumen bacterial community and PCR detection of uncultured bacteria. FEMS Microbiol Lett 229:23–30CrossRefPubMedGoogle Scholar
  39. 39.
    Kobayashi Y (2006) Inclusion of novel bacteria in rumen microbiology: need for basic and applied science. Anim Sci J 77:375–385CrossRefGoogle Scholar
  40. 40.
    Von Wintzingerode F, Gobel UB, Stackebrandt E (1997) Determination of microbial diversity in environmental samples: pitfalls of PCR-based rRNA analysis. FEMS Microbiol Rev 21:213–229CrossRefGoogle Scholar
  41. 41.
    Reysenbach AL, Giver LJ, Wickham GS, Pace NR (1992) Differential amplification of rRNA genes by polymerase chain reaction. Appl Environ Microbiol 58:3417–3418PubMedGoogle Scholar
  42. 42.
    Tajima K, Aminov RI, Nagamine T, Matsui H, Nakamura M, Benno Y (2001) Diet-dependent shifts in the bacterial population of the rumen revealed with real-time PCR. Appl Environ Microbiol 67:2766–2774CrossRefPubMedGoogle Scholar
  43. 43.
    Farrelly V, Rainey FA, Stackebrandt E (1995) Effect of genome size and rrn gene copy number on PCR amplification of 16S rRNA genes from a mixture of bacterial species. Appl Environ Microbiol 61:2798–2801PubMedGoogle Scholar
  44. 44.
    Suzuki MT, Giovannoni SJ (1996) Bias caused by template annealing in the amplification of mixtures of 16S rRNA genes by PCR. Appl Environ Microbiol 62:625–630PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2009

Authors and Affiliations

  • L. Y. Yang
    • 1
  • J. Chen
    • 1
  • X. L. Cheng
    • 2
  • D. M. Xi
    • 1
  • S. L. Yang
    • 1
  • W. D. Deng
    • 1
  • H. M. Mao
    • 1
  1. 1.Faculty of Animal Science and TechnologyYunnan Agricultural UniversityKunmingChina
  2. 2.The Bio-Resource Institute of Diqing District Science and Technology BureauShangeli-raChina

Personalised recommendations