Molecular Biology Reports

, Volume 37, Issue 5, pp 2141–2147 | Cite as

Protein profiling analysis of skeletal muscle of a pufferfish, Takifugu rubripes

  • Jian LuEmail author
  • Jianzhou Zheng
  • Haijun Liu
  • Jun Li
  • Huayou Chen
  • Keping ChenEmail author


Protein profile of the skeletal muscle of Takifugu rubripes, a kind of pufferfish, was carried out with two-dimensional polyacrylamide gel electrophoresis (2-DE). Among the 112 protein spots detected in a silver-stained 2-D polyacrylamide gel, 33 were analyzed by Matrix Assisted Laser Desorption Ionisation tandem time-of-flight mass spectrometry (MALDI TOF/TOF MS), and 21 were identified by MASCOT. There were six structural proteins, such as alpha-actin, tropomyosin, and myosin heavy chain, and six with known functions such as T-cell receptor alpha chain, 4SNc-Tudor domain protein, SMC3 protein, and Translin associated factor X, as well as nine hypothetical novel proteins, including titin, andretinol dehydrogenase, and apolipoprotein A-I binding protein. These proteins were further categorized into six functional groups. This paper established a suitable technical protocol to eliminate the high abundance proteins while preserving middle abundance proteins for proteomics studies using Takifugu skeletal muscle. It is also favorable for further investigation on screening marker proteins for monitoring and controlling the quality of fish meat.


Takifugu rubripes Skeletal muscle MALDI TOF/TOF Two-dimensional polyacrylamide gel electrophoresis Proteomics 



This work was supported by Natural Science Fund for Colleges and Universities in Jiangsu Province, China (No. 08KJD180008). We thank Professor Yong Wang (Jiangsu University, China) for his revision of our manuscript.


  1. 1.
    Brenner S, Elgar G, Sandford R et al (1993) Characterisation of the pufferfish (Fugu) genome as a compact model vertebrate genome. Nature 366:265–268. doi: 10.1038/366265a0 CrossRefPubMedGoogle Scholar
  2. 2.
    Aparicio S, Chapman J, Stupka E et al (2002) Whole genome shotgun assembly and analysis of the genome of Fugu rubripes. Science 297:1301–1310. doi: 10.1126/science.1072104 CrossRefPubMedGoogle Scholar
  3. 3.
    Carbonaro M (2004) Proteomics: present and future in food quality evaluation. Trends Food Sci Technol 15:209–216. doi: 10.1016/j.tifs.2003.09.020 CrossRefGoogle Scholar
  4. 4.
    Lametsch R, Bendixen E (2001) Proteome analysis applied to meat science: characterizing post mortem changes in porcine muscle. J Agric Food Chem 49:4531–4537. doi: 10.1021/jf010103g CrossRefPubMedGoogle Scholar
  5. 5.
    Doherty MK, McLean L, Hayter JR (2004) The proteome of chicken skeletal muscle: changes in soluble protein expression during growth in a layer strain. Proteomics 4:2082–2093. doi: 10.1002/pmic.200300716 CrossRefPubMedGoogle Scholar
  6. 6.
    Bendixen E (2005) The use of proteomics in meat science. Meat Sci 71:138–149. doi: 10.1016/j.meatsci.2005.03.013 CrossRefGoogle Scholar
  7. 7.
    Westermeier R, Naven T (2002) Proteomics in practice: a laboratory manual of proteome analysis practical proteomics. Wiley-VCH, Weinheim, GermanyGoogle Scholar
  8. 8.
    Kuan W, Janela M, Ann T (1979) Titin: major myofibrillar components of striated muscle. Proc Natl Acad Sci USA 76:3698–3702. doi: 10.1073/pnas.76.8.3698 CrossRefGoogle Scholar
  9. 9.
    Fürst DO, Osborn M, Weber K (1989) Myogenesis in the mouse embryo: differential onset of expression of myogenic proteins and the involvement of titin in myofibril assembly. J Cell Biol 109:517–527. doi: 10.1083/jcb.109.2.517 CrossRefPubMedGoogle Scholar
  10. 10.
    Whiting A, Wardale J, Trinick J (1989) Does titin regulate the length of muscle thick filaments? J Mol Biol 205:163–169. doi: 10.1016/0022-2836(89)90381-1 CrossRefGoogle Scholar
  11. 11.
    Henk LG, Siegfried L (2004) The giant protein titin: a major player in myocardial mechanics, signaling, and disease. Circ Res 94:284–295. doi: 10.1161/01.RES.0000117769.88862.F8 CrossRefGoogle Scholar
  12. 12.
    Yoshida Y, Kojima N, Kurosawa N (1995) Molecular cloning of Sia alpha-2, 3-Gal-beta 1, 4-Glc-Nac-alpha 2, 8-sialyltransferase from mouse brain. J Biol Chem 270:14628–14633. doi: 10.1074/jbc.270.24.14628 CrossRefPubMedGoogle Scholar
  13. 13.
    Patrick JB, Christine T, Michele D (1997) Both apolipoprotein E and A-I genes are present in a nonmammalian vertebrate and are highly expressed during embryonic development. Proc Natl Acad Sci USA 94:8622–8627. doi: 10.1073/pnas.94.16.8622 CrossRefGoogle Scholar
  14. 14.
    Usener D, Schadendorf D, Koch J, Dübel S, Eichmüller S (2003) cTAGE: a cutaneous T cell lymphoma associated antigen family with tumor-specific splicing. Invest Dermatol 121:198–206. doi: 10.1046/j.1523-1747.2003.12318.x CrossRefGoogle Scholar
  15. 15.
    Giancarlo G (2006) SMC3 knockdown triggers genomic instability and p53-dependent apoptosis in human and zebrafish cells. Mol Cancer 5:52Google Scholar
  16. 16.
    Watrin E, Peters JM (2006) Cohesin and DNA damage repair. Exp Cell Res 312(14):2687–2693. doi: 10.1016/j.yexcr.2006.06.024 CrossRefPubMedGoogle Scholar
  17. 17.
    Deardorff MA, Kaur M, Yaeger D et al (2007) Mutations in cohesin complex members SMC3 and SMC1A cause a mild variant of Cornelia de Lange syndrome with predominant mental retardation. Am J Hum Genet 80(3):485–494. doi: 10.1086/511888 CrossRefPubMedGoogle Scholar
  18. 18.
    Tuba E, Bilada B, Dilhan O et al (2002) DNA damage-dependent interaction of the nuclear matrix protein C1D with translin-associated factor X (TRAX). J Cell Sci 115:207–216Google Scholar
  19. 19.
    Chennathukuzhi VM, Kurihara Y, Bray JD et al (2001) Trax (Translin-associated Factor X), a primarily cytoplasmic protein, inhibits the binding of TB-RBP (Translin) to RNA. J Biol Chem 276:13256–13263. doi: 10.1074/jbc.M009707200 CrossRefPubMedGoogle Scholar
  20. 20.
    Tong X, Drapkin R, Yalamanchili R et al (1995) The Epstein-Barr virus nuclear protein acidic domain forms a complex with a novel cellular coactivator that can interact with TFIIE. Mol Cell Biol 15:4735–4744PubMedGoogle Scholar
  21. 21.
    Ponting CP (1997) Tudor domains in proteins that interact with RNA. Trends Biochem Sci 2:51–52. doi: 10.1016/S0968-0004(96)30049-2 CrossRefGoogle Scholar
  22. 22.
    Porta A, Colonna-Romano S, Callebaut I et al (1999) A homologue of the human 100 kDa protein (p100) is differentially expressed by Histoplasma capsulatum during infection of murine macrophages. Biochem Biophys Res Commun 254:605–613. doi: 10.1006/bbrc.1998.9894 CrossRefPubMedGoogle Scholar
  23. 23.
    Shunnosuke A, Masako S, Kosaku Y, Takehiko H, Katsumasa O, Koichi S, Eric D (2002) A Tudor protein with multiple SNc domains from pea seedlings: cellular localization, partial characterization, sequence analysis, and phylogenetic relationships. J Exp Bot 384:971–983Google Scholar
  24. 24.
    Li C-L, Yang W-Z, Chen Y-P et al (2008) Structural and functional insights into human Tudor-SN, a key component linking RNA interference and editing. Nucleic Acids Res 36(11):3579–3589. doi: 10.1093/nar/gkn236 CrossRefPubMedGoogle Scholar
  25. 25.
    Alexander D, Andreas M (2002) Assembly of centrosomal proteins and microtubule organization depends on PCM-1. J Cell Biol 159:255–266. doi: 10.1083/jcb.200204023 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2009

Authors and Affiliations

  1. 1.Institute of Life SciencesJiangsu UniversityZhenjiangPeople’s Republic of China
  2. 2.School of Food and Biological EngineeringJiangsu UniversityZhenjiangPeople’s Republic of China

Personalised recommendations