Advertisement

Molecular Biology Reports

, Volume 37, Issue 4, pp 2117–2124 | Cite as

Reprogramming human fibroblasts using HIV-1 TAT recombinant proteins OCT4, SOX2, KLF4 and c-MYC

  • Chuanying Pan
  • Baisong Lu
  • Hong Chen
  • Colin E. Bishop
Article

Abstract

It has been shown that human and murine fibroblasts can be reprogrammed by ectopic expression of transcription factors using viral vectors. For the purpose of human therapeutic applications, the integration of viral transgenes into the genome is unlikely to be accepted. We therefore produced recombinant transcription factor proteins in E. coli (OCT4, SOX2, c-MYC and KLF4) carrying the cell penetrating TAT domain from HIV1. The purified proteins were able to enter into mammalian cells when added to tissue culture medium but appeared not to translocate to the nucleus. Further investigation indicated that most of the protein was tied up in the endosomes and was unavailable for reprogramming. Once this problem has been solved it seems likely that protein reprogramming will be the method of choice for clinical applications.

Keywords

Induced pluripotent stem cells (iPSCs) TAT peptide Reprogramming Transcription factors Gene expression 

Notes

Acknowledgments

We are grateful to Lisa Dailey for providing the 6X0/S-luc luciferase reporter plasmid. We thank Zhan Wang (Wake Forest Institute for Regenerative Medicine) for his help in experiments. C. Pan was supported by CHINA SCHOLARSHIP COUNCIL. This work was supported by a grant from National Institutes of Health (NIH) (R21 RR025408).

References

  1. 1.
    Okita K, Ichisaka T, Yamanaka S (2007) Generation of germline-competent induced pluripotent stem cells. Nature 448:313–317. doi: 10.1038/nature05934 CrossRefPubMedGoogle Scholar
  2. 2.
    Wernig M, Meissner A, Foreman R, Brambrink T, Ku M, Hochedlinger K, Bernstein BE, Jaenisch R (2007) In vitro reprogramming of fibroblasts into a pluripotent ES-cell-like state. Nature 448:318–324. doi: 10.1038/nature05944 CrossRefPubMedGoogle Scholar
  3. 3.
    Nakagawa M, Koyanagi M, Tanabe K, Takahashi K, Ichisaka T, Aoi T, Okita K, Mochiduki Y, Takizawa N, Yamanaka S (2008) Generation of induced pluripotent stem cells without Myc from mouse and human fibroblasts. Nat Biotechnol 26:101–106. doi: 10.1038/nbt1374 CrossRefPubMedGoogle Scholar
  4. 4.
    Yu J, Vodyanik MA, Smuga-Otto K, Antosiewicz-Bourget J, Frane JL, Tian S, Nie J, Jonsdottir GA, Ruotti V, Stewart R, Slukvin II, Thomson JA (2007) Induced pluripotent stem cell lines derived from human somatic cells. Science 318:1917–1920. doi: 10.1126/science.1151526 CrossRefPubMedGoogle Scholar
  5. 5.
    Hanna J, Wernig M, Markoulaki S, Sun CW, Meissner A, Cassady JP, Beard C, Brambrink T, Wu LC, Townes TM, Jaenisch R (2007) Treatment of sickle cell anemia mouse model with iPS cells generated from autologous skin. Science 318:1920–1923. doi: 10.1126/science.1152092 CrossRefPubMedGoogle Scholar
  6. 6.
    Mali P, Ye Z, Hommond HH, Yu X, Lin J, Chen G, Zou J, Cheng L (2008) Improved efficiency and pace of generating induced pluripotent stem cells from human adult and fetal fibroblasts. Stem Cells 26:1998–2005. doi: 10.1634/stemcells.2008-0346 CrossRefPubMedGoogle Scholar
  7. 7.
    Huangfu D, Maehr R, Guo W, Eijkelenboom A, Snitow M, Chen AE, Melton DA (2008) Induction of pluripotent stem cells by defined factors is greatly improved by small-molecule compounds. Nat Biotechnol 26:795–797. doi: 10.1038/nbt1418 CrossRefPubMedGoogle Scholar
  8. 8.
    Shi Y, Do JT, Desponts C, Hahm HS, Scholer HR, Ding S (2008) A combined chemical and genetic approach for the generation of induced pluripotent stem cells. Cell Stem Cell 2:525–528. doi: 10.1016/j.stem.2008.05.011 CrossRefPubMedGoogle Scholar
  9. 9.
    Okita K, Nakagawa M, Hyenjong H, Ichisaka T, Yamanaka S (2008) Generation of mouse induced pluripotent stem cells without viral vectors. Science 322:949–953. doi: 10.1126/science.1164270 CrossRefPubMedGoogle Scholar
  10. 10.
    Stadtfeld M, Nagaya M, Utikal J, Weir G, Hochedlinger K (2008) Induced pluripotent stem cells generated without viral integration. Science 322:945–949. doi: 10.1126/science.1162494 CrossRefPubMedGoogle Scholar
  11. 11.
    Fawell S, Seery J, Daikh Y, Moore C, Chen LL, Pepinsky B, Barsoum J (1994) Tat-mediated delivery of heterologous proteins into cells. Proc Natl Acad Sci USA 91:664–668. doi: 10.1073/pnas.91.2.664 CrossRefPubMedGoogle Scholar
  12. 12.
    Mann DA, Frankel AD (1991) Endocytosis and targeting of exogenous HIV-1 Tat protein. EMBO J 10:1733–1739PubMedGoogle Scholar
  13. 13.
    Vives E, Brodin P, Lebleu B (1997) A truncated HIV-1 Tat protein basic domain rapidly translocates through the plasma membrane and accumulates in the cell nucleus. J Biol Chem 272:16010–16017. doi: 10.1074/jbc.272.25.16010 CrossRefPubMedGoogle Scholar
  14. 14.
    Gump JM, Dowdy SF (2007) TAT transduction: the molecular mechanism and therapeutic prospects. Trends Mol Med 13:443–448. doi: 10.1016/j.molmed.2007.08.002 CrossRefPubMedGoogle Scholar
  15. 15.
    Murriel CL, Dowdy SF (2006) Influence of protein transduction domains on intracellular delivery of macromolecules. Expert Opin Drug Deliv 3:739–746. doi: 10.1517/17425247.3.6.739 CrossRefPubMedGoogle Scholar
  16. 16.
    Ambrosetti DC, Scholer HR, Dailey L, Basilico C (2000) Modulation of the activity of multiple transcriptional activation domains by the DNA binding domains mediates the synergistic action of Sox2 and Oct-3 on the fibroblast growth factor-4 enhancer. J Biol Chem 275:23387–23397. doi: 10.1074/jbc.M000932200 CrossRefPubMedGoogle Scholar
  17. 17.
    Jin LH, Bahn JH, Eum WS, Kwon HY, Jang SH, Han KH, Kang TC, Won MH, Kang JH, Cho SW, Park J, Choi SY (2001) Transduction of human catalase mediated by an HIV-1 TAT protein basic domain and arginine-rich peptides into mammalian cells. Free Radic Biol Med 31:1509–1519. doi: 10.1016/S0891-5849(01)00734-1 CrossRefPubMedGoogle Scholar
  18. 18.
    Park J, Kim KA, Ryu JY, Choi EY, Lee KS, Choi SY (2000) Generation and characterization of cell-permeable green fluorescent protein mediated by the basic domain of human immunodeficiency virus type 1 Tat. J Microbiol Biotechnol 10:797–804Google Scholar
  19. 19.
    Kwon HY, Eum WS, Jang HW, Kang JH, Ryu J, Lee BR, Jin LH, Park J, Choi SY (2000) Transduction of Cu, Zn-superoxide dismutase mediated by an HIV-1 Tat protein basic domain into mammalian cells. FEBS Lett 485:163–167. doi: 10.1016/S0014-5793(00)02215-8 CrossRefPubMedGoogle Scholar
  20. 20.
    Yoshikawa T, Sugita T, Mukai Y, Yamanada N, Nagano K, Nabeshi H, Yoshioka Y, Nakagawa S, Abe Y, Kamada H, Tsunoda S, Tsutsumi Y (2008) Organelle-targeted delivery of biological macromolecules using the protein transduction domain: potential applications for Peptide aptamer delivery into the nucleus. J Mol Biol 380:777–782. doi: 10.1016/j.jmb.2008.05.047 CrossRefPubMedGoogle Scholar
  21. 21.
    Zhou H, Wu S, Joo JY, Zhu S, Han DW, Lin T, Trauger S, Bien G, Yao S, Zhu Y, Siuzdak G, Schöler HR, Duan L, Ding S (2009) Generation of induced pluripotent stem cells using recombinant proteins. Cell Stem Cell 4:381–384. doi: 10.1016/j.stem.2009.04.005 CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2009

Authors and Affiliations

  1. 1.College of Animal Science and Technology, Shaanxi Key Laboratory of Molecular Biology for AgricultureNorthwest A&F UniversityYanglingChina
  2. 2.Institute for Regenerative MedicineWake Forest UniversityWinston-SalemUSA

Personalised recommendations