Molecular Biology Reports

, Volume 37, Issue 4, pp 1943–1955 | Cite as

A comparative analysis of the complete mitochondrial genome of the Eurasian otter Lutra lutra (Carnivora; Mustelidae)

  • Jang-Seu Ki
  • Dae-Sik Hwang
  • Tae-Jin Park
  • Sang-Hoon Han
  • Jae-Seong Lee
Article

Abstract

Otter populations are declining throughout the world and most otter species are considered endangered. Molecular methods are suitable tools for population genetic research on endangered species. In the present study, we analyzed the complete mitochondrial genome (mitogenome) sequence of the Eurasian otter Lutra lutra. The mitochondrial DNA sequence of the Eurasian otter is 16,505 bp in length and consists of 13 protein-coding genes, 22 tRNAs, 2 rRNAs, and a control region (CR). The CR sequence of otters from Europe and Asia showed nearly identical numbers and nucleotide sequences of minisatellites. Phylogenetic analysis of Mustelidae mitogenomes, including individual genes, revealed that Lutrinae and Mustelinae form a clade, and that L. lutra and Enhydra lutris are sister taxa within the Lutrinae. Phylogenetic analyses revealed that of the 13 mitochondrial protein-coding genes, ND5 is the most reliable marker for analysis of phylogenetic relationships within the Mustelidae.

Keywords

Mustelidae Eurasian otter Lutra lutra Mitochondrial genome Control region Minisatellite 

Notes

Acknowledgments

We thank Drs. Mi-Sook Min and Hang Lee (Seoul National University) for providing us with the tissue samples. We would also like to thank Dr. Hans-Uwe Dahms for critical reading of a preliminary version of this manuscript and English editing. This work was supported by the year-2008 grant titled “Origin of biological diversity of Korea: molecular phylogenetic analyses of major Korean taxa” funded by The National Institute of Biological Resources, Korean Government awarded to Jae-Seong Lee.

Supplementary material

References

  1. 1.
    Reuther C (1993) Lutra lutra (Linnaeus, 1758) -Fischotter. In: Niethammer J, Krapp F (eds) Handbuch der Säugetiere Europas Band 5/II. Aula Verlag, Wiesbaden, pp 907–961Google Scholar
  2. 2.
    IUCN (2007) The IUCN red list of threatened species (http://www.iucnredlist.org)
  3. 3.
    Koepfli KP, Kanchanasaka B, Sasaki H, Jacques HL, Louie KDY, Hoai T, Dang NX, Geffen E, Gutleb A, Han S-Y, Heggberget TM, LaFontaine L, Lee H, Melisch R, Ruiz-Olmo J, Santos-Reis M, Sidorovich VE, Stubbe M, Wayne RK (2009) Establishing the foundation for an applied molecular taxonomy of otters in southeast Asia. Conserv Genet 9:1589–1604CrossRefGoogle Scholar
  4. 4.
    Conroy JWH, Chanin PRF (2000) The status of the Eurasian otter (Lutra lutra) in Europe-a review. J Int Otter Surviv Fund 1:7–28Google Scholar
  5. 5.
    Macdonald SM, Mason CF (1994) Status and conservation needs of the otter (Lutra lutra) in the western Palaearctic. In: Nature and environment no. 67. Strasbourg: Council of Europe PressGoogle Scholar
  6. 6.
    Koepfli KP, Wayne RK (1998) Phylogenetic relationships of otters (Carnivora: Mustelidae) based on mitochondrial cytochrome b sequences. J Zool 246:401–416CrossRefGoogle Scholar
  7. 7.
    Ruiz-Olmo J, Delibes M (1998) La Nutria en España ante el Horizonte del Año 2000. Málaga: Sociedad Española para la Conservación y Estudio de los Mamíferos (SECEM)Google Scholar
  8. 8.
    Ansorge H, Schipke R, Zinke O (1997) Population structure of the otter Lutra lutra. Parameters and model for a central European region. Z Säugetierkunde 62:143–151Google Scholar
  9. 9.
    Kruuk H (1995) Wild Otters. Oxford University Press, New YorkGoogle Scholar
  10. 10.
    Broekhuizen S (1989) Concentrations of heavy metals and PCBs in otters. De Levende Natuur 90:43–47 (Dutch with English summary)Google Scholar
  11. 11.
    Macdonald SM, Mason CF (1988) Observations on an otter population in decline. Acta Theriol 33:415–434Google Scholar
  12. 12.
    Smit MD, Leonards PE, de Jongh AW, van Hattum BG (1998) Polychlorinated biphenyls in the Eurasian otter (Lutra lutra). Rev Environ Contam Toxicol 157:95–130PubMedGoogle Scholar
  13. 13.
    Jo Y-S, Won C-M, Kim J-P (2006) Distribution of Eurasian otter Lutra lutra in Korea. Korean J Environ Biol 24:89–94 (in Korean with English abstract)Google Scholar
  14. 14.
    Won CM, Smith KG (1999) History and current status of mammals of the Korean peninsula. Mammal Rev 29:3–33CrossRefGoogle Scholar
  15. 15.
    Schwartz MK, Luikart G, Waples RS (2007) Genetic monitoring as a promising tool for conservation and management. Trends Ecol Evol 22:25–33CrossRefPubMedGoogle Scholar
  16. 16.
    Burke T, Rainey WE, White TJ (1992) Molecular variation and ecological problems. In: Berry RJ, Crawford TJ, Hewitt GM (eds) Genes in ecology. Blackwell, Oxford, pp 229–254Google Scholar
  17. 17.
    Avise JC (1994) Molecular markers, natural history and evolution. Chapman & Hall, New YorkGoogle Scholar
  18. 18.
    Hwang D-S, Ki J-S, Jeong D-H, Kim B-H, Lee B-K, Han S-H, Lee J-S (2008) A comprehensive analysis of three Asiatic black bear mitochondrial genomes (subspecies: ussuricus, formosanus, mupinensis) with emphasis on the complete mtDNA sequence of Ursus thibetanus ussuricus (Ursidae). Mitochondrial DNA 19:418–429PubMedGoogle Scholar
  19. 19.
    Slatkin M (1985) Gene flow in natural populations. Annu Rev Ecol Syst 16:393–430CrossRefGoogle Scholar
  20. 20.
    Dallas JF, Piertney SB (1998) Microsatellite primers for the Eurasian otter. Mol Ecol 7:1248–1251PubMedGoogle Scholar
  21. 21.
    Dallas JF, Bacon PJ, Carss DN, Conroy JWH, Green R, Jefferies DJ, Kruuk H, Marshall F, Piertney SB, Racey PA (1999) Genetic diversity in the Eurasian otter, Lutra lutra, in Scotland. Evidence from microsatellite polymorphism. Biol J Linn Soc Lond 68:73–86CrossRefGoogle Scholar
  22. 22.
    Effenberger S, Suchentrunk F (1999) RFLP analysis of the mitochondrial DNA of otters (Lutra lutra) from Europe-implications for conservation of a flagship species. Biol Conserv 90:229–234CrossRefGoogle Scholar
  23. 23.
    Tul’skaia OL, Derenko MV, Maliarchuk BA (1999) Low level of variability of mitochondrial DNA in sea otter populations from Kamchatka and Komandor Islands. Genetika 35:17–21PubMedGoogle Scholar
  24. 24.
    Mucci N, Pertoldi C, Madsen AB, Loeschcke V, Randi E (1999) Extremely low mitochondrial DNA control-region sequence variation in the otter Lutra lutra population of Denmark. Hereditas 130:316–331CrossRefGoogle Scholar
  25. 25.
    Cassens I, Tiedemann R, Suchentrunk F, Hartl GB (2000) Mitochondrial DNA variation in the European otter (Lutra lutra) and the use of spatial autocorrelation analysis in conservation. J Hered 91:31–35CrossRefPubMedGoogle Scholar
  26. 26.
    Masuda R, Yoshida MC (1994) A molecular phylogeny of the family Mustelidae (Mammalia, Carnivora), based on comparison of mitochondrial cytochrome b nucleotide sequences. Zool Sci 11:605–612PubMedGoogle Scholar
  27. 27.
    Ledje C, Arnason U (1996) Phylogenetic analyses of complete cytochrome b genes of the order carnivora with particular emphasis on the caniformia. J Mol Evol 42:135–144CrossRefPubMedGoogle Scholar
  28. 28.
    Marmi J, Lopez-Giraldez JF, Domingo-Roura X (2004) Phylogeny, evolutionary history and taxonomy of the Mustelidae based on sequences of the cytochrome b gene and a complex repetitive flanking region. Zool Scr 33:481–499CrossRefGoogle Scholar
  29. 29.
    Koepfli KP, Deere KA, Slater GJ, Begg C, Begg K, Grassman L, Lucherini M, Veron G, Wayne RK (2008) Multigene phylogeny of the Mustelidae: resolving relationships, tempo and biogeographic history of a mammalian adaptive radiation. BMC Biol 6:10CrossRefPubMedGoogle Scholar
  30. 30.
    Ferrando A, Ponsà M, Marmi J, Domingo-Roura X (2004) Eurasian otters, Lutra lutra, have a dominant mtDNA haplotype from the Iberian Peninsula to Scandinavia. J Hered 95:430–435CrossRefPubMedGoogle Scholar
  31. 31.
    Ketmaier V, Bernardini C (2005) Structure of the mitochondrial control region of the Eurasian otter (Lutra lutra; Carnivora, Mustelidae): patterns of genetic heterogeneity and implications for conservation of the species in Italy. J Hered 96:318–328CrossRefPubMedGoogle Scholar
  32. 32.
    Curole AP, Kocher TD (1999) Mitogenomics: digging deeper with complete mitochondrial genomes. Trends Ecol Evol 14:394–398CrossRefPubMedGoogle Scholar
  33. 33.
    Arnason U, Gullberg A, Janke A, Kullberg M (2007) Mitogenomic analyses of caniform relationships. Mol Phylogenet Evol 45:863–874CrossRefPubMedGoogle Scholar
  34. 34.
    Yonezawa T, Nikaido M, Kohno N, Fukumoto Y, Okada N, Hasegawa M (2007) Molecular phylogenetic study on the origin and evolution of Mustelidae. Gene 396:1–12CrossRefPubMedGoogle Scholar
  35. 35.
    Sambrook J, Russel DW (2001) Molecular cloning: a laboratory manuel, 3rd edn. Cold Spring Harbor Laboratory Press, Cold Spring HarborGoogle Scholar
  36. 36.
    Chang Y-C, Hunag F-L, Lo T-B (1994) The complete nucleotide sequence and gene organization of carp (Cyprinus carpio) mitochondrial genome. J Mol Evol 38:138–155CrossRefPubMedGoogle Scholar
  37. 37.
    Delisle I, Strobeck C (2002) Conserved primers for rapid sequencing of the complete mitochondrial genome from carnivores, applied to three species of bears. Mol Biol Evol 19:357–361PubMedGoogle Scholar
  38. 38.
    Kumazawa Y, Ota H, Nishida M, Ozawa T (1998) The complete nucleotide sequence of a snake (Dinodon semicarinatus) mitochondrial genome with two identical control regions. Genetics 150:313–329PubMedGoogle Scholar
  39. 39.
    Lowe TM, Eddy SR (1997) tRNAscan-SE: a program for improved detection of transfer RNA genes in genomic sequence. Nucleic Acids Res 25:955–964CrossRefPubMedGoogle Scholar
  40. 40.
    Zuker M (2003) Mfold web server for nucleic acid folding and hybridization prediction. Nucleic Acids Res 31:3406–3415CrossRefPubMedGoogle Scholar
  41. 41.
    Mathews DH, Sabina J, Zuker M, Turner DH (1999) Expanded sequence dependence of thermodynamic parameters improves prediction of RNA secondary structure. J Mol Biol 288:911–940CrossRefPubMedGoogle Scholar
  42. 42.
    Benson G (1999) Tandem repeats finder: a program to analyze DNA sequences. Nucleic Acids Res 27:573–580CrossRefPubMedGoogle Scholar
  43. 43.
    Thompson JD, Gibson TJ, Plewniak F, Jeanmougin F, Higgins DG (1997) The Clustal X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res 24:4876–4882CrossRefGoogle Scholar
  44. 44.
    Tamura K, Dudley J, Nei M, Kumar S (2007) MEGA4: molecular evolutionary genetics analysis (MEGA) software version 4.0. Mol Biol Evol 24:1596–1599CrossRefPubMedGoogle Scholar
  45. 45.
    Hall TA (1999) BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucl Acids Symp Ser 41:95–98Google Scholar
  46. 46.
    Perna NT, Kocher TD (1995) Patterns of nucleotide composition at four fold degenerate sites of animal mitochondrial genomes. J Mol Evol 41:353–358CrossRefPubMedGoogle Scholar
  47. 47.
    Bjornerfeldt S, Webster MT, Vila C (2006) Relaxation of selective constraints on dog mitochondrial DNA following domestication. Genome Res 16:990–994CrossRefPubMedGoogle Scholar
  48. 48.
    Kim KS, Lee SE, Jeong HW, Ha JH (1998) The complete nucleotide sequence of the domestic dog (Canis familiaris) mitochondrial genome. Mol Phylogenet Evol 10:210–220CrossRefPubMedGoogle Scholar
  49. 49.
    Arnason U, Gullberg A, Janke A, Kullberg M, Lehman N, Petrov EA, Vainola R (2006) Pinniped phylogeny and a new hypothesis for their origin and dispersal. Mol Phylogenet Evol 41:345–354CrossRefPubMedGoogle Scholar
  50. 50.
    Arnason U, Adegoke JA, Bodin K, Born EW, Esa YB, Gullberg A, Nilsson M, Short RV, Xu X, Janke A (2002) Mammalian mitogenomic relationships and the root of the eutherian tree. Proc Natl Acad Sci USA 99:8151–8156CrossRefPubMedGoogle Scholar
  51. 51.
    Peng R, Zeng B, Meng X, Yue B, Zhang Z, Zou F (2007) The complete mitochondrial genome and phylogenetic analysis of the giant panda (Ailuropoda melanoleuca). Gene 397:76–83CrossRefPubMedGoogle Scholar
  52. 52.
    Abascal F, Zardoya R, Posada D (2005) Selection of best-fit models of protein evolution. Bioinformatics 21:2104–2105CrossRefPubMedGoogle Scholar
  53. 53.
    Huelsenbeck JP, Ronquist F (2001) MRBAYES: bayesian inference of phylogenetic trees. Bioinformatics 17:754–755CrossRefPubMedGoogle Scholar
  54. 54.
    Page RDM (1996) TREEVIEW: an application to display of phylogenetic trees on personal computers. Comput Appl Biosci 12:357–358PubMedGoogle Scholar
  55. 55.
    Swofford DL (2002) PAUP* 4.0: phylogenetic analysis using parsimony (*and other methods). Sinauer Associates, SunderlandGoogle Scholar
  56. 56.
    Posada D, Crandall KA (1998) MODELTEST: testing the model of DNA substitution. Bioinformatics 14:817–818CrossRefPubMedGoogle Scholar
  57. 57.
    Johansen S, Bakke I (1996) The complete mitochondrial DNA sequence of Atlantic cod, Gadus morhua: relevance to taxonomic studies among cod-fishes. Mol Mar Biol Biotechnol 5:203–214PubMedGoogle Scholar
  58. 58.
    Cao Y, Waddell PJ, Okada N, Hasegawa M (1998) The complete mitochondrial DNA sequence of the shark Mustelus manazo: evaluating rooting contradictions to living bony vertebrates. Mol Biol Evol 15:1637–1646PubMedGoogle Scholar
  59. 59.
    Hou WR, Chen Y, Wu X, Hu JC, Peng ZS, Yang J, Tang ZX, Zhou CQ, Li YM, Yang SK, Du YJ, Kong LL, Ren ZL, Zhang HY, Shuai SR (2007) A complete mitochondrial genome sequence of Asian black bear Sichuan subspecies (Ursus thibetanus mupinensis). Int J Biol Sci 3:85–90CrossRefGoogle Scholar
  60. 60.
    Ojala D, Montoya J, Attardi G (1981) tRNA punctuation model of RNA processing in human mitochondria. Nature 290:470–474CrossRefPubMedGoogle Scholar
  61. 61.
    Sbisà E, Tanzariello F, Reyes A, Pesole G, Saccone C (1997) Mammalian mitochondrial D-loop region structural analysis: identification of new conserved sequences and their functional and evolutionary implications. Gene 205:125–140CrossRefPubMedGoogle Scholar
  62. 62.
    Anderson S, Bankier AT, Barrell BG, de Bruijin MHL, Coulson AR, Drouin J, Eperon IC, Nierlich CDP, Roe BA, Sanger F, Schreier PH, Smith AJH, Staden R, Young IG (1981) Sequence and organization of the human mitochondrial genome. Nature 290:457–465CrossRefPubMedGoogle Scholar
  63. 63.
    Walberg MW, Clayton DA (1981) Sequence and properties of the human KB cell and mouse L cell D-loop regions of mitochondrial DNA. Nucleic Acids Res 9:5411–5421CrossRefPubMedGoogle Scholar
  64. 64.
    Wilkinson GS, Chapman AM (1991) Length and sequence variation in evening bat D-loop mtDNA. Genetics 128:607–617PubMedGoogle Scholar
  65. 65.
    Arnason E, Rand DM (1992) Heteroplasmy of short tandem repeats in mitochondrial DNA of Atlantic cod, Gadus morhua. Genetics 132:211–220PubMedGoogle Scholar
  66. 66.
    Lunt DH, Whipple LE, Hyman BC (1998) Mitochondrial DNA variable number tandem repeats (VNTRs): utility and problems in molecular ecology. Mol Ecol 7:1441–1455CrossRefPubMedGoogle Scholar
  67. 67.
    Cantatore P, Roberti M, Pesole G, Ludovico A, Milella F, Gadaleta MN, Saccone C (1994) Evolutionary analysis of cytochrome b sequences in some perciformes: evidence for a slower rate of evolution than in mammals. J Mol Evol 39:589–597CrossRefPubMedGoogle Scholar
  68. 68.
    Nowak RM (1999) Walker’s mammals of the world, 6th edn. Johns Hopkins University Press, Baltimore and London, p 2015Google Scholar
  69. 69.
    Delisle I, Strobeck C (2005) A phylogeny of the Caniformia (order Carnivora) based on 12 complete protein-coding mitochondrial genes. Mol Phylogenet Evol 37:192–201CrossRefPubMedGoogle Scholar
  70. 70.
    Farrell LE, Roamn J, Sunquist ME (2000) Dietary separation of sympatric carnivores identified by molecular analysis of scats. Mol Ecol 9:1583–1590CrossRefPubMedGoogle Scholar
  71. 71.
    Riddle AE, Pilgrim KL, Mills LS, McKelvey KS, Ruggiero LF (2003) Identification of mustelids using mitochondrial DNA and noninvasive sampling. Conserv Genet 4:241–243CrossRefGoogle Scholar
  72. 72.
    Gómez-Moliner BJ, Cabria MT, Rubines J, Garin I, Madeira MJ, Elejalde A, Aihartza J, Fournier P, Palazón S (2004) PCR-RFLP identification of mustelid species: European mink (Mustela lutreola) American mink (M vison) and polecat (M putorius) by analysis of excremental DNA. J Zool 262:311–316CrossRefGoogle Scholar
  73. 73.
    Pilot M, Gralak B, Goszczynski J, Posluszny M (2007) A method of genetic identification of pine marten (Martes martes) and stone marten (Martes foina) and its application to faecal samples. J Zool 271:140–147CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2009

Authors and Affiliations

  • Jang-Seu Ki
    • 1
  • Dae-Sik Hwang
    • 1
  • Tae-Jin Park
    • 1
  • Sang-Hoon Han
    • 2
  • Jae-Seong Lee
    • 3
  1. 1.Department of Molecular and Environmental Bioscience, Graduate SchoolHanyang UniversitySeoulSouth Korea
  2. 2.Division of Vertebrates ResearchNational Institute of Biological ResourcesIncheonSouth Korea
  3. 3.Department of Chemistry, College of Natural SciencesHanyang UniversitySeoulSouth Korea

Personalised recommendations