Molecular Biology Reports

, Volume 37, Issue 1, pp 235–239 | Cite as

Asp327Asn polymorphism of sex hormone-binding globulin gene is associated with systemic lupus erythematosus incidence

  • Piotr Piotrowski
  • Robert Gasik
  • Margarita Lianeri
  • Dorota Cieślak
  • Mariusz Wudarski
  • Paweł Hrycaj
  • Jan K. Łącki
  • Paweł P. JagodzińskiEmail author


Endogenous sex hormones have been observed to have a role in systemic lupus erythematosus (SLE) predisposition. Sex hormone-binding globulin (SHBG) regulates the bioavailability of sex hormones to target tissues. Therefore, we examined the distribution of the SHBG functional polymorphism Asp327Asn (rs6259) in SLE patients (n = 150) and controls (n = 150) in a Polish population. We found a contribution of the SHBG327Asn variant to the development of SLE. Women with the Asp/Asn and Asn/Asn genotypes displayed a 2.630-fold increased risk of SLE (95% CI = 1.561–4.433, P = 0.0003). SHBG has a much higher affinity for testosterone than estradiol, and the SHBG327Asn variant displays a reduction of estradiol clearance. Therefore we suggest that the opposing effects of estrogens and testosterone on the immune system and imbalance in the levels of these hormones in SLE patients can be enhanced by the SHBG327Asn protein variant.


SLE Polymorphism SHBG 



Supported by grant No 502-01-01124182-07474 from Poznań University of Medical Sciences.


  1. 1.
    Sekigawa I, Naito T, Hira K et al (2004) Possible mechanisms of gender bias in SLE: a new hypothesis involving a comparison of SLE with atopy. Lupus 13:217–222CrossRefPubMedGoogle Scholar
  2. 2.
    Love LA (1994) New environmental agents associated with lupus-like disorders. Lupus 3:467–471CrossRefPubMedGoogle Scholar
  3. 3.
    Rönnblom L, Eloranta ML, Alm GV (2006) The type I interferon system in systemic lupus erythematosus. Arthritis Rheum 54:408–420CrossRefPubMedGoogle Scholar
  4. 4.
    Piotrowski PC, Duriagin S, Jagodzinski PP (2005) Expression of human endogenous retrovirus clone 4-1 may correlate with blood plasma concentration of anti-U1 RNP and anti-Sm nuclear antibodies. Clin Rheumatol 24:620–624CrossRefPubMedGoogle Scholar
  5. 5.
    Nakajima M, Nakajima A, Kayagaki N et al (1997) Expression of Fas ligand and its receptor in cutaneous lupus: implication in tissue injury. Clin Immunol Immunopathol 83:223–229CrossRefPubMedGoogle Scholar
  6. 6.
    Rosen A, Casciola-Rosen L, Ahearn J (1995) Novel packages of viral and self-antigens are generated during apoptosis. J Exp Med 181:1557–1561CrossRefPubMedGoogle Scholar
  7. 7.
    Stohl W, Metyas S, Tan SM et al (2003) B lymphocyte stimulator overexpression in patients with systemic lupus erythematosus: longitudinal observations. Arthritis Rheum 48:3475–3486CrossRefPubMedGoogle Scholar
  8. 8.
    Tsokos GC, Liossis SN (1999) Immune cell signaling defects in lupus: activation, anergy and death. Immunol Today 20:119–124CrossRefPubMedGoogle Scholar
  9. 9.
    Zeng FQ, Yin RF, Tan GZ et al (2004) Characterization of DNA antigens from immune complexes deposited in the skin of patients with systemic lupus erythematosus. Chin Med J 117:1066–1071PubMedGoogle Scholar
  10. 10.
    Cervera R, Khamashta MA, Font J et al (1993) Systemic lupus erythematosus: clinical and immunologic patterns of disease expression in a cohort of 1, 000 patients. The European Working Party on systemic lupus erythematosus. Medicine (Baltimore) 72:113–124Google Scholar
  11. 11.
    Formiga F, Moga I, Pac M et al (1999) Mild presentation of systemic lupus erythematosus in elderly patients assessed by SLEDAI. SLE Disease Activity Index Lupus 8:462–465Google Scholar
  12. 12.
    Scofield RH, Bruner GR, Namjou B et al (2008) Klinefelter’s syndrome (47, XXY) in male systemic lupus erythematosus patients: support for the notion of a gene-dose effect from the X chromosome. Arthritis Rheum 58:2511–2517CrossRefPubMedGoogle Scholar
  13. 13.
    Walker SE, Keisler LW, Caldwell CW et al (1996) Effects of altered prenatal hormonal environment on expression of autoimmune disease in NZB/NZW mice. Environ Health Perspect 104(Suppl 4):815–821CrossRefPubMedGoogle Scholar
  14. 14.
    Fortunati N, Becchis M, Catalano MG et al (1999) Sex hormone-binding globulin, its membrane receptor, and breast cancer: a new approach to the modulation of estradiol action in neoplastic cells. J Steroid Biochem Mol Biol 69:473–479CrossRefPubMedGoogle Scholar
  15. 15.
    Kahn SM, Hryb DJ, Nakhla AM et al (2002) Sex hormone-binding globulin is synthesized in target cells. J Endocrinol 175:113–120CrossRefPubMedGoogle Scholar
  16. 16.
    Catalano MG, Comba A, Fazzari A et al (1997) Sex steroid binding protein receptor (SBP-R) is related to a reduced proliferation rate in human breast cancer. Breast Cancer Res Treat 42:227–234CrossRefPubMedGoogle Scholar
  17. 17.
    Power SG, Bocchinfuso WP, Pallesen M et al (1992) Molecular analyses of a human sex hormone-binding globulin variant: evidence for an additional carbohydrate chain. J Clin Endocrinol Metab 75:1066–1070CrossRefPubMedGoogle Scholar
  18. 18.
    Van Baelen H, Convents R, Cailleau J et al (1992) Genetic variation of human sex hormone-binding globulin: evidence for a worldwide bi-allelic gene. J Clin Endocrinol Metab 75:135–139CrossRefPubMedGoogle Scholar
  19. 19.
    Bocchinfuso WP, Ma KL, Lee WM et al (1992) Selective removal of glycosylation sites from sex hormone-binding globulin by site-directed mutagenesis. Endocrinology 131:2331–2336CrossRefPubMedGoogle Scholar
  20. 20.
    Cousin P, Dechaud H, Grenot C et al (1999) Influence of glycosylation on the clearance of recombinant human sex hormone-binding globulin from rabbit blood. J Steroid Biochem Mol Biol 70:115–121CrossRefPubMedGoogle Scholar
  21. 21.
    Cousin P, Calemard-Michel L, Lejeune H et al (2004) Influence of SHBG gene pentanucleotide TAAAA repeat and D327 N polymorphism on serum sex hormone-binding globulin concentration in hirsute women. J Clin Endocrinol Metab 89:917–924CrossRefPubMedGoogle Scholar
  22. 22.
    Haiman CA, Riley SE, Freedman ML et al (2005) Common genetic variation in the sex steroid hormone-binding globulin (SHBG) gene and circulating SHBG levels among postmenopausal women: the Multiethnic Cohort. J Clin Endocrinol Metab 90:2198–2204CrossRefPubMedGoogle Scholar
  23. 23.
    Hochberg MC (1997) Updating the American College of Rheumatology revised criteria for the classification of systemic lupus erythematosus. Arthritis Rheum 40:1725CrossRefPubMedGoogle Scholar
  24. 24.
    Rinaldi S, Geay A, Déchaud H et al. (2002)Validity of free testosterone and free estradiol determinations in serum samples from postmenopausal women by theoretical calculations. Cancer Epidemiol Biomarkers Prev 11:1065-1071Google Scholar
  25. 25.
    Wong M, Tsao BP (2006) Current topics in human SLE genetics. Springer Semin Immunopathol 28:97–107CrossRefPubMedGoogle Scholar
  26. 26.
    Burzynski M, Duriagin S, Mostowska M et al (2007) MTR 2756 A > G polymorphism is associated with the risk of systemic lupus erythematosus in the Polish population. Lupus 16:450–454CrossRefPubMedGoogle Scholar
  27. 27.
    Sigurdsson S, Nordmark G, Göring HH et al (2005) Polymorphisms in the tyrosine kinase 2 and interferon regulatory factor 5 genes are associated with systemic lupus erythematosus. Am J Hum Genet 76:528–537CrossRefPubMedGoogle Scholar
  28. 28.
    Remmers EF, Plenge RM, Lee AT et al (2007) STAT4 and the risk of rheumatoid arthritis and systemic lupus erythematosus. N Engl J Med 357:977–986CrossRefPubMedGoogle Scholar
  29. 29.
    Hom G, Graham RR, Modrek B et al (2008) Association of systemic lupus erythematosus with C8orf13-BLK and ITGAM-ITGAX. N Engl J Med 358:900–909CrossRefPubMedGoogle Scholar
  30. 30.
    International Consortium for Systemic Lupus Erythematosus Genetics (SLEGEN), Harley JB, Alarcón-Riquelme ME, Criswell LA et al (2008) Genome-wide association scan in women with systemic lupus erythematosus identifies susceptibility variants in ITGAM, PXK, KIAA1542 and other loci. Nat Genet 40:204–210CrossRefPubMedGoogle Scholar
  31. 31.
    McMurray RW, Ndebele K, Hardy KJ et al (2001) 17-beta-estradiol suppresses IL-2 and IL-2 receptor. Cytokine 14:324–333CrossRefPubMedGoogle Scholar
  32. 32.
    Kanda N, Tamaki K (1999) Estrogen enhances immunoglobulin production by human PBMCs. J Allergy Clin Immunol 103:282–288CrossRefPubMedGoogle Scholar
  33. 33.
    Kanda N, Tsuchida T, Tamaki K (1999) Estrogen enhancement of anti-double-stranded DNA antibody and immunoglobulin G production in peripheral blood mononuclear cells from patients with systemic lupus erythematosus. Arthritis Rheum 42:328–337CrossRefPubMedGoogle Scholar
  34. 34.
    Kanda N, Tsuchida T, Tamaki K (1997) Testosterone inhibits immunoglobulin production by human peripheral blood mononuclear cells from patients with systemic lupus erythematosus. Arthritis Rheum 40:1703–1711CrossRefPubMedGoogle Scholar
  35. 35.
    Mendel CM (1989) The free hormone hypothesis: a physiologically based mathematical model. Endocr Rev 10:232–274CrossRefPubMedGoogle Scholar
  36. 36.
    Lahita RG, Bradlow HL, Ginzler E et al (1987) Low plasma androgens in women with systemic lupus erythematosus. Arthritis Rheum 30:241–248CrossRefPubMedGoogle Scholar
  37. 37.
    Harman SM, Metter EJ, Tobin JD et al (2001) Longitudinal effects of aging on serum total and free testosterone levels in healthy men. Baltimore longitudinal study of aging. J Clin Endocrinol Metab 86:724–731CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2009

Authors and Affiliations

  • Piotr Piotrowski
    • 1
  • Robert Gasik
    • 1
  • Margarita Lianeri
    • 1
  • Dorota Cieślak
    • 2
  • Mariusz Wudarski
    • 3
  • Paweł Hrycaj
    • 2
  • Jan K. Łącki
    • 3
  • Paweł P. Jagodziński
    • 1
    Email author
  1. 1.Department of Biochemistry and Molecular BiologyPoznań University of Medical SciencesPoznanPoland
  2. 2.Department of Rheumatology and Clinical ImmunologyPoznan University of Medical SciencesPoznanPoland
  3. 3.Institute of RheumatologyWarsawPoland

Personalised recommendations