Molecular Biology Reports

, Volume 37, Issue 4, pp 1883–1890 | Cite as

Maxiprep genomic DNA extractions for molecular epidemiology studies and biorepositories

  • Christian Alberto Garcia-Sepulveda
  • Enrique Carrillo-Acuña
  • Sandra Elizabeth Guerra-Palomares
  • Montserrat Barriga-Moreno


Molecular epidemiology and genomic characterisation studies require the screening of large numbers of individuals to achieve statistical significance. Although many of the novel DNA extraction methods offer convenient, high-throughput capabilities, their use for the processing of larger sample volumes becomes very expensive. We are currently compiling the Mexican Genomic DNA Collection in order to address specific health priorities through molecular techniques. Our approach employs a low-cost laundry detergent based DNA extraction technique that maximizes DNA yield and quality. We have optimised four different modalities (maxiprep, midiprep, miniprep and microprep) for two different sources (leukocyte concentrates and whole blood). Our optimised protocol produces 4.5 mg of DNA from 15 ml of blood-bank discarded leukocyte concentrates with spectrophotometric quality, genomic integrity and PCR suitability that rivals that of phenol–chloroform extracted samples. We present evidence of many PCR applications that we have carried out on samples extracted with this technique including Killer-cell Immunoglobulin-like Receptor genotyping, Short Tandem Repeat profiling as well as nucleic acid screening for hepatitis B and human immunodeficiency type-1 viruses. This paper highlights many of the advantages that this DNA extraction technique provides over existing methodologies, whether it is used to establish large genomic DNA collections (as was our main intention) or as a routine DNA extraction method for PCR applications.


Molecular epidemiology DNA banking DNA extraction Methods Biorepository 



The authors wish to thank Dr. Flavio J. Martínez Morales of the Pharmacology Laboratory for his valuable support and for providing equipment without which this study would not have been possible. To Dr. Daniel E. Noyola Cherpitel for proofreading this paper and to Hugo Contreras Treviño for helping with the phenol–chloroform extractions. This work was supported by funds from the Mexican Consejo Nacional de Ciencia y Tecnología (CONACYT) grant number #55360 and the Programa de Mejoramiento del Profesorado (PROMEP) of the Universidad Autónoma de San Luis Potosi (UASLP-PTC-155).


  1. 1.
    Holland NT, Smith MT, Eskenazi B, Bastaki M (2003) Biological sample collection and processing for molecular epidemiological studies. Mutat Res 543:217–234. doi: 10.1016/S1383-5742(02)00090-X CrossRefPubMedGoogle Scholar
  2. 2.
    Potter JD, Goode E, Morimoto L (2003) AACR special conference: the molecular and genetic epidemiology of cancer. Cancer Epidemiol Biomarkers Prev 12:803–805PubMedGoogle Scholar
  3. 3.
    Vaught JB (2006) Blood collection, shipment, processing, and storage. Cancer Epidemiol Biomarkers Prev 15:1582–1584. doi: 10.1158/1055-9965.EPI-06-0630 CrossRefPubMedGoogle Scholar
  4. 4.
    Yang SY, Milford E, Hämmerling U, Dupont B (1989) Descriptionof the reference panel of B-lymphoblastoid cell lines for factors of the HLA system: the B-cell line panel designed for the tenth international histocompatibility workshop. In: Springer–Verlag (ed) The tenth histocompatibility workshop: 1987. Springer, New YorkGoogle Scholar
  5. 5.
    Albarino CG, Romanowski V (1994) Phenol extraction revisited: a rapid method for the isolation and preservation of human genomic DNA from whole blood. Mol Cell Probes 8:423–427. doi: 10.1006/mcpr.1994.1060 CrossRefPubMedGoogle Scholar
  6. 6.
    Buffone GJ, Darlington GJ (1985) Isolation of DNA from biological specimens without extraction with phenol. Clin Chem 31:164–165PubMedGoogle Scholar
  7. 7.
    Carter MJ, Milton ID (1993) An inexpensive and simple method for DNA purifications on silica particles. Nucleic Acids Res 21:1044. doi: 10.1093/nar/21.4.1044 CrossRefPubMedGoogle Scholar
  8. 8.
    Chomczynski P, Sacchi N (1987) Single-step method of RNA isolation by acid guanidinium thiocyanate-phenol-chloroform extraction. Anal Biochem 162:156–159. doi: 10.1016/0003-2697(87)90021-2 CrossRefPubMedGoogle Scholar
  9. 9.
    Gross-Bellard M, Oudet P, Chambon P (1973) Isolation of high-molecular-weight DNA from mammalian cells. Eur J Biochem 36:32–38. doi: 10.1111/j.1432-1033.1973.tb02881.x CrossRefPubMedGoogle Scholar
  10. 10.
    Gustincich S, Manfioletti G, Del Sal G, Schneider C, Carninci P (1991) A fast method for high-quality genomic DNA extraction from whole human blood. Biotechniques 11:298–300 302PubMedGoogle Scholar
  11. 11.
    Kok T, Wati S, Bayly B, Devonshire-Gill D, Higgins G (2000) Comparison of six nucleic acid extraction methods for detection of viral DNA or RNA sequences in four different non-serum specimen types. J Clin Virol 16:59–63. doi: 10.1016/S1386-6532(99)00066-9 CrossRefPubMedGoogle Scholar
  12. 12.
    Miller SA, Dykes DD, Polesky HF (1988) A simple salting out procedure for extracting DNA from human nucleated cells. Nucleic Acids Res 16:1215. doi: 10.1093/nar/16.3.1215 CrossRefPubMedGoogle Scholar
  13. 13.
    Scherczinger CA, Bourke MT, Ladd C, Lee HC (1997) DNA extraction from liquid blood using QIAamp. J Forensic Sci 42:893–896PubMedGoogle Scholar
  14. 14.
    Bahl A, Pfenninger M (1996) A rapid method of DNA isolation using laundry detergent. Nucleic Acids Res 24:1587–1588. doi: 10.1093/nar/24.8.1587 CrossRefPubMedGoogle Scholar
  15. 15.
    Del Sal G, Manfioletti G, Schneider C (1989) The CTAB-DNA precipitation method: a common mini-scale preparation of template DNA from phagemids, phages or plasmids suitable for sequencing. Biotechniques 7:514–520PubMedGoogle Scholar
  16. 16.
    Drabek J, Petrek M (2002) A sugar, laundry detergent, and salt method for extraction of deoxyribonucleic acid from blood. Biomed Pap Med Fac Univ Palacky Olomouc Czech Repub 146:37–39PubMedGoogle Scholar
  17. 17.
    Nasiri H, Forouzandeh M, Rasaee MJ, Rahbarizadeh F (2005) Modified salting-out method: high-yield, high-quality genomic DNA extraction from whole blood using laundry detergent. J Clin Lab Anal 19:229–232. doi: 10.1002/jcla.20083 CrossRefPubMedGoogle Scholar
  18. 18.
    Blajchman MA (1998) Immunomodulatory effects of allogeneic blood transfusions: clinical manifestations and mechanisms. Vox Sang 74(Suppl 2):315–319PubMedGoogle Scholar
  19. 19.
    Blumberg N, Zhao H, Wang H, Messing S, Heal JM, Lyman GH (2007) The intention-to-treat principle in clinical trials and meta-analyses of leukoreduced blood transfusions in surgical patients. Transfusion 47:573–581. doi: 10.1111/j.1537-2995.2007.01158.x CrossRefPubMedGoogle Scholar
  20. 20.
    Barton JC (1981) Nonhemolytic, noninfectious transfusion reactions. Semin Hematol 18:95–121PubMedGoogle Scholar
  21. 21.
    Ishida A, Handa M (1997) The efficacy of leukodepleted platelet transfusion. Nippon Rinsho 55:2385–2391PubMedGoogle Scholar
  22. 22.
    Dzik WH (2002) Leukoreduction of blood components. Curr Opin Hematol 9:521–526. doi: 10.1097/00062752-200211000-00010 CrossRefPubMedGoogle Scholar
  23. 23.
    Heddle NM, Blajchman MA (1995) The leukodepletion of cellular blood products in the prevention of HLA-alloimmunization and refractoriness to allogeneic platelet transfusions. Blood 85:603–606PubMedGoogle Scholar
  24. 24.
    Hume HA, Preiksaitis JB (1999) Transfusion associated graft-versus-host disease, cytomegalovirus infection and HLA alloimmunization in neonatal and pediatric patients. Transfus Sci 21:73–95. doi: 10.1016/S0955-3886(99)00067-3 CrossRefPubMedGoogle Scholar
  25. 25.
    Lee GM, Thornthwaite JT, Rasch EM (1984) Picogram per cell determination of DNA by flow cytofluorometry. Anal Biochem 137:221–226. doi: 10.1016/0003-2697(84)90374-9 CrossRefPubMedGoogle Scholar
  26. 26.
    Butler JM (2006) Genetics and genomics of core short tandem repeat loci used in human identity testing. J Forensic Sci 51:253–265. doi: 10.1111/j.1556-4029.2006.00046.x CrossRefPubMedGoogle Scholar
  27. 27.
    Martin P, Garcia O, Albarran C, Garcia P, Yurrebaso I, Alonso A (2007) Allele frequencies of six miniSTR loci (D10S1248, D14S1434, D22S1045, D4S2364, D2S441 and D1S1677) in a Spanish population. Forensic Sci Int 169:252–254. doi: 10.1016/j.forsciint.2006.03.015 CrossRefPubMedGoogle Scholar
  28. 28.
    Yunis JJ, Garcia O, Yunis EJ (2005) Population frequencies for CSF1PO, TPOX, TH01, F13A01, FES/FPS and VWA in seven Amerindian populations from Colombia. J Forensic Sci 50:682–684PubMedGoogle Scholar
  29. 29.
    Albert J, Fenyo EM (1990) Simple, sensitive, and specific detection of human immunodeficiency virus type 1 in clinical specimens by polymerase chain reaction with nested primers. J Clin Microbiol 28:1560–1564PubMedGoogle Scholar
  30. 30.
    Aslam MA, Awan FR, Tauseef I, Ali S, Ahmad N, Malik NA, Riaz MN, Qureshi JA (2008) Identification of hepatitis B virus core mutants by PCR-RFLP in chronic hepatitis B patients from Punjab, Pakistan. Arch Virol 153:163–170. doi: 10.1007/s00705-007-1093-z CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2009

Authors and Affiliations

  • Christian Alberto Garcia-Sepulveda
    • 1
  • Enrique Carrillo-Acuña
    • 1
  • Sandra Elizabeth Guerra-Palomares
    • 1
  • Montserrat Barriga-Moreno
    • 1
  1. 1.Laboratorio de Biología Molecular, Facultad de MedicinaUniversidad Autónoma de San Luis PotosíSan Luis PotosíMexico

Personalised recommendations