Molecular Biology Reports

, Volume 37, Issue 2, pp 745–753

Screening of genes induced by salt stress from Alfalfa

  • Houcong Jin
  • Yan Sun
  • Qingchuan Yang
  • Yuehui Chao
  • Junmei Kang
  • Hong Jin
  • Yan Li
  • Gruber Margaret


An alfalfa cDNA library induced by salt stress was constructed by suppression subtraction hybridization (SSH) technology. Total RNA from 10-day-old seedlings was used as a “driver,” and total RNA from seedlings induced by salt was used as a “tester”. One hundred and nineteen clones identified as positive clones by reverse Northern dot-blotting resulted in 82 uni-ESTs comprised of 16 contigs and 66 singletons. Blast analysis of deduced protein sequences revealed that 51 ESTs had identity similar to proteins with known function, while 24 could not be annotated at all. Most of the annotated sequences were homologous to genes involved in abiotic or biotic stress in plants. Among these proteins, beta-amylase, fructose-1,6-bisphosphate, aldolase, and sucrose synthase are related to osmolyte synthesis; a CCCH-type zinc finger protein, DNA binding protein, His–Asp phosphotransfer protein, and the RelA/SpoT protein partake in transcription regulation and signal transduction; and ribulose-l,5-bisphosphate carboxylase/oxygenase, chlorophyll a/b binding proteins, and an early light-inducible proteins are related to photosynthesis. In addition, several ESTs, similar to genes from other plant species, closely involved in salt stress were isolated from alfalfa, such as an aquaporin protein, a late embryogenesis-abundant protein, and glutathione peroxidase.


Suppression subtractive hybridization (SSH) Alfalfa (Medicago sativa L.) SMART technology Reverse Northern dot-blotting Salt stress Real-time PCR 


  1. 1.
    Pastori GM, Foyer CH (2002) Common components, networks, and pathways of cross-tolerance to stress. The central role of ‘‘redox’’ and abscisic acid-mediated controls. Plant Physiol 129:460–468. doi:10.1104/pp.011021 CrossRefPubMedGoogle Scholar
  2. 2.
    Shen B, Jensen RG, Bohnert H (1997) Increased resistance to oxidative stress in transgenic plants by targeting mannitol biosynthesis to chloroplasts. Plant Physiol 113:1177–1183. doi:10.1104/pp.113.4.1177 CrossRefPubMedGoogle Scholar
  3. 3.
    Hasegawa PM, Bressan RA, Zhu JK, Bohnert HJ (2000) Plant cellular and molecular responses to high salinity. Annu Rev Plant Physiol Plant Mol Biol 51:463–499. doi:10.1146/annurev.arplant.51.1.463 CrossRefPubMedGoogle Scholar
  4. 4.
    Zhang HX, Blumwald E (2001) Transgenic salt-tolerant tomato plants accumulate salt in foliage but not in fruit. Nat Biotechnol 19:765–768. doi:10.1038/90824 CrossRefPubMedGoogle Scholar
  5. 5.
    Zhu JK (2002) Salt and drought stress signal transduction in plants. Annu Rev Plant Biol 53:247–273. doi:10.1146/annurev.arplant.53.091401.143329 CrossRefPubMedGoogle Scholar
  6. 6.
    Seki M, Kamei A, Yamaguchi-Shinozaki K, Shinozaki K (2003) Molecular responses to drought, salinity and frost: common and different paths for plant protection. Curr Opin Biotechnol 14:194–199. doi:10.1016/S0958-1669(03)00030-2 CrossRefPubMedGoogle Scholar
  7. 7.
    Shinozaki K, Yamaguchi-Shinozaki K, Seki M (2003) Regulatory network of gene expression in the drought and cold stress responses. Curr Opin Plant Biol 6:410–417. doi:10.1016/S1369-5266(03)00092-X CrossRefPubMedGoogle Scholar
  8. 8.
    Liu Q, Kasuga M, Sakuma Y (1998) Two transcription factors, DREB1 and DREB2, with an EREBP/AP2 DNA binding domain separate two cellular signal transduction pathways in drought- and low temperature-responsive gene expression, respectively, in Arabidopsis. Plant Cell 10:1391–1401CrossRefPubMedGoogle Scholar
  9. 9.
    Sohn KH, Lee SC, Jung HW (2006) Expression and functional roles of the pepper pathogen-induced transcription factor RAV1 in bacterial disease resistance and drought and salt stress tolerance. Plant Mol Biol 61:897–915. doi:10.1007/s11103-006-0057-0 CrossRefPubMedGoogle Scholar
  10. 10.
    Guo ZJ, Chen XJ, Wu XL, Ling JQ, Xu P (2004) Over expression of the AP2/EREBP transcription factor OPBP1 enhances disease resistance and salt tolerance in tobacco. Plant Mol Biol 55:607–618. doi:10.1007/s11103-004-1521-3 CrossRefPubMedGoogle Scholar
  11. 11.
    Xu SM, Wang XC, Chen J (2007) Zinc finger protein 1 (ThZF1) from salt cress (Thellungiella halophila) is a Cys-2/His-2-type transcription factor involved in drought and salt stress. Plant Cell Rep 26:497–506. doi:10.1007/s00299-006-0248-9 CrossRefPubMedGoogle Scholar
  12. 12.
    Nanjo T, Kobayashi M, Yoshiba Y et al (1999) Antisense suppression of proline degradation improves tolerance to freezing and salinity in Arabidopsis thaliana. FEBS Lett 461:205–210. doi:10.1016/S0014-5793(99)01451-9 CrossRefPubMedGoogle Scholar
  13. 13.
    Hong Z, Lakkineni K, Zhang Z et al (2000) Removal of feedback inhibition of D1-pyrroline-5-carboxylate synthetase results in increased proline accumulation and protection of plants from osmotic stress. Plant Physiol 122:1129–1136. doi:10.1104/pp.122.4.1129 CrossRefPubMedGoogle Scholar
  14. 14.
    Zhu JK (2001) Plant salt tolerance. Trends Plant Sci 6:66–71. doi:10.1016/S1360-1385(00)01838-0 CrossRefPubMedGoogle Scholar
  15. 15.
    Chen Y, Zheng HL, Xiao Q et al (2005) Effects of salinity on oxidative and antioxidative system of Spartina alterniflora. J Xiamen Unversity 44(4):576–579 Natural ScienceGoogle Scholar
  16. 16.
    Zhang DD, Ma HX, Ji XJ, Zhou CL, Wang MW, Tang RS, Yang YH (2006) Construction of cDNA Library of Salicornia bigelovii Torr. during early stage of salt stress based on suppression subtractive hybridization. Jiangsu J Agr Sci 22(2):113–116Google Scholar
  17. 17.
    Merchan F, Lorenzo L, Rizzo SG, Niebel A, Manyani H, Frugier F, Sousa C, Crespi M (2007) Identification of regulatory pathways involved in the reacquisition of root growth after salt stress in Medicago truncatula. Plant J 51:1–17. doi:10.1111/j.1365-313X.2007.03117.x CrossRefPubMedGoogle Scholar
  18. 18.
    Liu HH, Liu J, Fan SL, Song MZ, Han XL, Liu F, Shen FF (2008) Molecular cloning and characterization of a salinity stress-induced gene encoding DEAD-box helicase from the halophyte Apocynum venetum. J Exp Bot 59(3):633–644. doi:10.1093/jxb/erm355 CrossRefPubMedGoogle Scholar
  19. 19.
    Bekki A, Trinchant JC, Rigaud J (1987) Nitrogen fixation (C2H2 reduction) by Medicago nodules and bacteroids under sodium chloride stress. Physiol Plant 71:61–67. doi:10.1111/j.1399-3054.1987.tb04617.x CrossRefGoogle Scholar
  20. 20.
    Yang QC, Sun Y, Kang JM (2005) Research on the advancement of salt tolerant genes in alfalfa. Acta Agrestia Sin 13(3):253–256Google Scholar
  21. 21.
    Zhang J, Underwood LE, D’Ercole AJ (2000) Formation of chimeric cDNAs during suppression subtractive hybridization and subsequent polymersase chain reaction. Anal Biochem 282:259–262. doi:10.1006/abio.2000.4613 CrossRefPubMedGoogle Scholar
  22. 22.
    Sun JQ, Jiang HL, Xu YX, Li HM, Wu XY, Xie Q, Li C (2007) The CCCH-type zinc finger proteins AtSZF1 and AtSZF2 regulate salt stress responses in Arabidopsis. Plant Cell Physiol 48:1148–1158. doi:10.1093/pcp/pcm088 CrossRefPubMedGoogle Scholar
  23. 23.
    Zhang YM, Liu JK, Mohammad RS, Wong TY (2006) Characterization of a Mn-dependent fructose-1, 6-bisphosphate aldolase in Deinococcus radiodurans. Biometals 19:31–37. doi:10.1007/s10534-005-4320-7 CrossRefPubMedGoogle Scholar
  24. 24.
    Zhang XN, Lin CG, Chen HY et al (2003) Cloning of a NaCl-induced fructose-1, 6-diphosphate aldolase cDNA from Dunaliella salina and its expression in tobacco. Sci China 46(1):49–57CrossRefGoogle Scholar
  25. 25.
    Seki M, Narusaki M, Ishida J et al (2002) Monitoring the expression profiles of 7000 Arabidopsis genes under drought, cold and high salinity stresses using a full length cDNA microarray. Plant J 31:279–292. doi:10.1046/j.1365-313X.2002.01359.x CrossRefPubMedGoogle Scholar
  26. 26.
    Xu X, Yang J, Zheng GQ et al (2006) Sugars and sucrose-metabolizing enzymes in leaves of Lycium barbarum L. under salt stress. CJEA 14(2):46–48Google Scholar
  27. 27.
    Baisakh N, Subudhi PK, Varadwaj P (2008) Primary responses to salt stress in a halophyte, smooth cordgrass (Spartina alterniflora Loisel.). Funct Integr Genomics 8:287–300. doi:10.1007/s10142-008-0075-x CrossRefPubMedGoogle Scholar
  28. 28.
    Cramer GR, Ergül A, Grimplet J, Tillett RL, Tattersall EA, Bohlman MC, Vincent D, Sonderegger J, Evans J, Osborne C, Quilici D, Schlauch KA, Schooley DA, Cushman JC (2007) Water and salinity stress in grapevines: early and late changes in transcript and metabolite profiles. Funct Integr Genomics 7:111–134CrossRefPubMedGoogle Scholar
  29. 29.
    Schena M, Davis RW (1992) HDZip proteins: members of an Arabidopsis homeodomain protein superfamily. Proc Natl Acad Sci USA 89:3894–3898. doi:10.1073/pnas.89.9.3894 CrossRefPubMedGoogle Scholar
  30. 30.
    Olsson AS, Engström P, Söderman E (2004) The homeobox genes ATHB12 and ATHB7 encode potential regulators of growth in response to water deficit in Arabidopsis. Plant Mol Biol 55:663–677. doi:10.1007/s11103-004-1581-4 CrossRefPubMedGoogle Scholar
  31. 31.
    Neer EJ, Schmidt CJ, Nambudripad R, Smith TF (1994) The ancient regulatory-protein family of WD-repeat proteins. Nature 371:297–300. doi:10.1038/371297a0 CrossRefPubMedGoogle Scholar
  32. 32.
    Kim DW, Rakwal R, Agrawal GK et al (2005) A hydroponic rice seedling culture model system for investigating proteome of salt stress in rice leaf. Electrophoresis 26:4521–4539. doi:10.1002/elps.200500334 CrossRefPubMedGoogle Scholar
  33. 33.
    Yang CP, Wang YC, Liu GF, Jiang J (2004) Study on Gene Expression of Tamarix Under NaHCO3 Stress Using SSH Technology. Acta Genetica Sin 31:926–933Google Scholar
  34. 34.
    Zeng Q, Chen X, Wood AJ (2002) Two early light-inducible protein (ELIP) cDNAs from the resurrection plant Tortula ruralis are differentially expressed in response to desiccation, rehydration, salinity, and high light. Exp Bot 53:1197–1205. doi:10.1093/jexbot/53.371.1197 CrossRefGoogle Scholar
  35. 35.
    Shinozaki K, Yamaguchi-Shinozaki K, Mizoguchi T et al (1998) Molecular responses to water stress in Arabidopsis thaliana. J Plant Res 111:345–351. doi:10.1007/BF02512195 CrossRefGoogle Scholar
  36. 36.
    Skriver K, Mundy J (1990) Gene expression in response to abscisic acid and osmotic stress. Plant Cell 2:503–512CrossRefPubMedGoogle Scholar
  37. 37.
    Wang W, Vinocur B, Altman A (2003) Plant responses to drought, salinity and extreme temperatures: towards genetic engineering for stress tolerance. Planta 218:1–14. doi:10.1007/s00425-003-1105-5 CrossRefPubMedGoogle Scholar
  38. 38.
    Shen Q, Uknes S, Ho THD (1993) Hormone response complex in a novel abscisic acid and cycloheximide-inducible barley gene. J Biol Chem 268:23652–23660PubMedGoogle Scholar
  39. 39.
    Chen CN, Chu CC, Zentella R et al (2002) AtHVA22 gene family in Arabidopsis: phylogenetic relationship, ABA and stress regulation, and tissue-specific expression. Plant Mol Biol 49:633–644PubMedGoogle Scholar
  40. 40.
    Wei H, Dhanaraj AL, Rowland LJ et al (2005) Comparative analysis of expressed sequence tags from cold-acclimated and non-acclimated leaves of Rhododendron catawbiense Michx. Planta 221:406–416. doi:10.1007/s00425-004-1440-1 CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2009

Authors and Affiliations

  • Houcong Jin
    • 1
    • 3
  • Yan Sun
    • 2
  • Qingchuan Yang
    • 1
  • Yuehui Chao
    • 1
  • Junmei Kang
    • 1
  • Hong Jin
    • 3
  • Yan Li
    • 1
  • Gruber Margaret
    • 4
  1. 1.Institute of Animal SciencesChinese Academy of Agricultural SciencesBeijingPeople’s Republic of China
  2. 2.College of Animal Science and TechnologyChina Agriculture UniversityBeijingPeople’s Republic of China
  3. 3.College of AgronomyInner Mongolia Agricultural UniversityInner MongoliaPeople’s Republic of China
  4. 4.Saskatoon Research CentreAgriculture and Agri-FoodSaskatoonCanada

Personalised recommendations