Advertisement

Molecular Biology Reports

, 37:729 | Cite as

Molecular cloning and characterization of a novel glyoxalase I gene TaGly I in wheat (Triticum aestivum L.)

  • Fanyun Lin
  • Jianhong Xu
  • Jianrong Shi
  • Hongwei Li
  • Bin Li
Article

Abstract

Methylglyoxal is a kind of poisonous metabolite that can react with RNA, DNA and protein, which generally results in a number of side advert effects to cell. Glyoxalase I is a member of glyoxalase system that can detoxify methylglyoxal. An EST encoding a glyoxalase I was isolated from a SSH (suppression subtractive hybridization)-cDNA library of wheat spike inoculated by Fusarium graminearum. The corresponding full length gene, named TaGly I, was cloned, sequenced and characterized. Its genomic sequence consists of 2,719 bp, including seven exons and six introns, and its coding sequence is 929 bp with an open reading frame encoding 291 amino acids. Sequence alignment showed that there were two glyoxalase I domains in the deduced protein sequence. By using specific primers, TaGly I was mapped to chromosome 7D of wheat via a set of durum wheat ‘Langdon’ D-genome disomic-substitution lines. The result of Real-time quantitative polymerase chain reaction demonstrated that TaGly I was induced by the inoculation of Fusarium graminearum in wheat spikes. Additionally, it was also induced by high concentration of NaCl and ZnCl2. When TaGly I was overexpressed in tobacco leaves via Agrobacterium tumefaciens infection, the transgenic tobacco showed stronger tolerance to ZnCl2 stress relative to transgenic control with GFP. The above facts indicated that TaGly I might play a role in response to diverse stresses in plants.

Keywords

Glyoxalase I Triticum aestivum Chromosomal location Expression analysis Transient expression 

Notes

Acknowledgments

This work was supported by the Postdoctoral Fund of Jiangsu Academy of Agricultural Sciences (No. 6510610), National Public Benefit Research Foundation (No. nyhyzx3-15) and National Specific Foundation (2008zx08011-003)

References

  1. 1.
    Phillips SA, Thornalley PJ (1993) The formation of methylglyoxal from triose phosphates. Investigation using a specific assay for methylglyoxal. Eur J Biochem 212:101–105. doi: 10.1111/j.1432-1033.1993.tb17638.x CrossRefPubMedGoogle Scholar
  2. 2.
    Yadav SK, Singla-Pareek SL, Ray M et al (2005) Methylglyoxal levels in plants under salinity stress are dependent on glyoxalase I and glutathione. Biochem Biophys Res Commun 337:61–67. doi: 10.1016/j.bbrc.2005.08.263 CrossRefPubMedGoogle Scholar
  3. 3.
    Degenhardt TP, Thorpe SR, Baynes JW (1998) Chemical modification of proteins by methylglyoxal. Cell Mol Biol 44:1139–1145PubMedGoogle Scholar
  4. 4.
    Thornalley PJ (1990) The glyoxalase system: new developments towards functional characterization of a metabolic pathway fundamental to biological life. Biochem J 269:1–11PubMedGoogle Scholar
  5. 5.
    Cameron AD, Olin B, Ridderström M et al (1997) Crystal structure of human glyoxalase I—evidence for gene duplication and 3D domain swapping. EMBO J 16:3386–3395. doi: 10.1093/emboj/16.12.3386 CrossRefPubMedGoogle Scholar
  6. 6.
    Inoue Y, Tsujimoto Y, Kimmura A (1998) Expression of the glyoxalase I gene of Saccharomyces cerevisiae is regulated by high osmolarity glycerol mitogen-activated protein kinase pathway in osmotic stress response. J Biol Chem 273:2977–2983. doi: 10.1074/jbc.273.5.2977 CrossRefPubMedGoogle Scholar
  7. 7.
    Paulus C, Köllner B, Jacobsen H (1993) Physiological and biochemical characterization of glyoxalase I, a general marker for cell proliferation, from a soybean cell suspension. Planta 189:561–566. doi: 10.1007/BF00198220 CrossRefPubMedGoogle Scholar
  8. 8.
    Ridderström M, Mannervik B (1996) The primary structure of monomeric yeast glyoxalase I indicate a gene duplication resulting in two similar segments homologous with the subunit of dimeric human glyoxalase I. Biochem J 316:1005–1006PubMedGoogle Scholar
  9. 9.
    Chakravarty TN, Sopory SK (1998) Blue light stimulation of cell proliferation and glyoxalase I activity in callus cultures of Amaranthus paniculatus. Plant Sci 132:63–69. doi: 10.1016/S0168-9452(97)00264-1 CrossRefGoogle Scholar
  10. 10.
    Espartero J, Sánchez-Aguayo I, Pardo JM (1995) Molecular characterization of glyoxalase-I from a higher plant; upregulation by stress. Plant Mol Biol 29:1223–1233. doi: 10.1007/BF00020464 CrossRefPubMedGoogle Scholar
  11. 11.
    Singla-Pareek SL, Reddy MK, Sopory SK (2003) Genetic engineering of the glyoxalase pathway in tobacco leads to enhanced salinity tolerance. PNAS 100:14672–14677. doi: 10.1073/pnas.2034667100 CrossRefPubMedGoogle Scholar
  12. 12.
    Singla-Pareek SL, Yadav SK, Pareek A et al (2006) Transgenic tobacco overexpressing glyoxalase pathway enzymes grow and set viable seeds in zinc-spiked soils. Plant Physiol 140:613–623. doi: 10.1104/pp.105.073734 CrossRefPubMedGoogle Scholar
  13. 13.
    Johansen KS, Svendsen II, Rasmussen SK (2000) Purification and cloning of the two domain glyoxalase I from wheat bran. Plant Sci 155:11–20. doi: 10.1016/S0168-9452(99)00250-2 CrossRefPubMedGoogle Scholar
  14. 14.
    Lin FY, Lu QX, Xu JH et al (2008) Isolation of genes involved in the response of wheat to Fusarium graminearum by means of suppression subtractive hybridization. Acta Bot Boreal-Occident Sin 28:433–439Google Scholar
  15. 15.
    Shi JR, Xu DH, Yang HY et al (2008) DNA marker analysis for pyramided of Fusarium head blight (FHB) resistance QTLs from different germplasm. Genetica 133:77–84. doi: 10.1007/s10709-007-9186-x CrossRefPubMedGoogle Scholar
  16. 16.
    An DG, Su JY, Liu QY et al (2006) Mapping QTLs for nitrogen uptake in relation to the early growth of wheat (Triticum aestivum L.). Plant Soil 284:73–84. doi: 10.1007/s11104-006-0030-3 CrossRefGoogle Scholar
  17. 17.
    Murray MG, Thompson WF (1980) Rapid isolation of high molecular weight plant DNA. Nucleic Acids Res 8:4321–4326CrossRefPubMedGoogle Scholar
  18. 18.
    Joppa LR, Williams ND (1988) Langdon durum disomic substitution lines and aneuploid analysis in tetraploid wheat. Genome 30:222–228CrossRefGoogle Scholar
  19. 19.
    Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2−ΔΔCt method. Method 25:402–408. doi: 10.1006/meth.2001.1262 CrossRefGoogle Scholar
  20. 20.
    Holsters M, de Waele D, Depicker A et al (1978) Transfection and transformation of Agrobacterium tumefaciens. Mol Gen Cent 163:181–187Google Scholar
  21. 21.
    Arnon DI (1949) Copper enzymes in isolated chloroplasts polyphenoloxidase in Beta vulgaris. Plant Physiol 24:1–15. doi: 10.1104/pp.24.1.1 CrossRefPubMedGoogle Scholar
  22. 22.
    McMullen M, Jones R, Gallenberg D (1997) Scab of wheat and barley: a re-emerging disease of devastating impact. Plant Dis 81:1340–1348. doi: 10.1094/PDIS.1997.81.12.1340 CrossRefGoogle Scholar
  23. 23.
    Hart LP (1998) Variability of vomitoxin in truckloads of wheat in a wheat scab epidemic year. Plant Dis 82:625–630. doi: 10.1094/PDIS.1998.82.6.625 CrossRefGoogle Scholar
  24. 24.
    Veena, Reddy VS, Sopory SK (1999) Glyoxalase I from Brassica juncea: molecular cloning, regulation and its over-expression confer tolerance in transgenic tobacco under stress. Plant J 17:385–395. doi: 10.1046/j.1365-313X.1999.00390.x CrossRefPubMedGoogle Scholar
  25. 25.
    Clugston SL, Daub E, Honek JF (1998) Identification of glyoxalase I sequences in Brassica oleracea and Sporobolus stapfianus: evidence for gene duplication events. J Mol Evol 47:230–234. doi: 10.1007/PL00006380 CrossRefPubMedGoogle Scholar
  26. 26.
    Skipsey M, Andrews CJ, Townson JK et al (2000) Cloning and characterization of glyoxalase I from soybean. Arch Biochem Biophys 374:261–268. doi: 10.1006/abbi.1999.1596 CrossRefPubMedGoogle Scholar
  27. 27.
    Wu GH, Wilen RW, Robertson AJ et al (1999) Isolation, chromosomal localization, and differential expression of mitochondrial manganese muperoxide dismutase and chloroplastic copper/zinc superoxide dismutase genes in wheat. Plant Physiol 120:513–520. doi: 10.1104/pp.120.2.513 CrossRefPubMedGoogle Scholar
  28. 28.
    Chen ZY, Brown RL, Damann KE et al (2004) Identification of a maize kernel stress-related protein and its effect on aflatoxin accumulation. Phytopathol 94:938–945. doi: 10.1094/PHYTO.2004.94.9.938 CrossRefGoogle Scholar
  29. 29.
    Sun YS, Xie ZM, Li J et al (2006) Assessment of toxicity of heavy metal contaminated soils by the toxicity characteristic leaching procedure. Environ Geochem Health 28:73–78. doi: 10.1007/s10653-005-9014-0 CrossRefPubMedGoogle Scholar
  30. 30.
    Zarcinas BA, Pongsakul P, McLaughlin MJ et al (2004) Heavy metals in soils and crops in Southeast Asia. 2. Thailand. Environ Geochem Health 26:359–371. doi: 10.1007/s10653-005-4670-7 CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2009

Authors and Affiliations

  • Fanyun Lin
    • 1
  • Jianhong Xu
    • 1
  • Jianrong Shi
    • 1
  • Hongwei Li
    • 2
  • Bin Li
    • 2
  1. 1.Institute of Food SafetyJiangsu Academy of Agricultural SciencesNanjingChina
  2. 2.State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental BiologyChinese Academy of SciencesBeijingChina

Personalised recommendations