Molecular Biology Reports

, Volume 37, Issue 3, pp 1611–1618 | Cite as

Molecular cloning, expression patterns and subcellular localization of porcine TMCO1 gene

  • Zhisheng Zhang
  • Delin Mo
  • Peiqing Cong
  • Zuyong He
  • Fei Ling
  • Anning Li
  • Yuna Niu
  • Xiao Zhao
  • Chunyan Zhou
  • Yaosheng Chen


The product of transmembrane and coiled-coil domains 1 (TMCO1) gene is a member of DUF841 superfamily of several eukaryotic proteins with unknown function. The partial DNA sequence of porcine TMCO1 was first cloned with a pig 567 bp ORF encoding 188 amino acids. By tissues expression analysis, the TMCO1 was found highly expressed in the liver, kidney and heart. The porcine TMCO1 protein was subsequently demonstrated to localize in the mitochondrion by confocal fluorescence microscopy. This data provides an important basis for conducing further studies on the functions and regulatory mechanisms underlying the role of TMCO1 gene.


Pig TMCO1 Expression pattern Subcellular localization 



This research was supported by Key Project of Chinese National Project for Fundamental Research and Development (973 Project) (Grant No. 2006CB102101), National Natural Science Foundation of China (Grant No. 30300249).


  1. 1.
    Hoenderop JGJ, Chon H, Gkika D, Bluyssen HAR, Holstege FCP, St-Arnaud R, Braam B, Bindels RJM (2004) Regulation of gene expression by dietary Ca2+ in kidneys of 25-hydroxyvitamin D 3–1a-hydroxylase knockout mice. Kidney Int 65:531–539CrossRefPubMedGoogle Scholar
  2. 2.
    McDunn JE, Turnbull IR, Polpitiya AD, Tong A, MacMillan SK, Osborne DF, Hotchkiss RS, Colonna M, Cobb JP (2006) Splenic CD4+ T cells have a distinct transcriptional response six hours after the onset of sepsis. J Am Coll Surg 203:365–375CrossRefPubMedGoogle Scholar
  3. 3.
    Dokmanovic-Chouinard M, Chung WK, Chevre JC, Watson E, Yonan J, Wiegand B, Bromberg Y, Wakae N, Wright CV, Overton J, Ghosh S, Sathe GM, Ammala CE, Brown KK, Ito R, LeDuc C, Solomon K, Fischer SG, Leibel RL (2008) Positional cloning of “Lisch-Like”, a candidate modifier of susceptibility to type 2 diabetes in mice. PLoS Genet 4:e1000137. doi:10.1371/journal.pgen.1000137 CrossRefPubMedGoogle Scholar
  4. 4.
    Killedar SY, Eckenrode SE, McIndoe RA, She J-X, Nguyen CQ, Peck AB, Cha SR (2006) Early pathogenic events associated with Sjogren’s syndrome (SjS)-like disease of the nod mouse using microarray analysis. Lab Invest 86:1243–1260. doi:10.1038/labinvest.3700487 CrossRefPubMedGoogle Scholar
  5. 5.
    Kurimura A, Saeki M, Kato S, Iwamuro S (2002) Analyses of intracellular localization and dynamic behaviors of human hydrophobic protein HP10122. Zool Sci 19:1432Google Scholar
  6. 6.
    Noel S, Sharma S, Shanker R, Rath SK (2007) Primaquine-induced differential gene expression analysis in mice liver using DNA microarrays. Toxicology 239:96–107. doi:10.1016/j.tox.2007.06.098 CrossRefPubMedGoogle Scholar
  7. 7.
    Iwamuro S, Saeki M, Kato S (1999) Multi-Ubiquitination of a nascent membrane protein produced in a rabbit reticulocyte lysate. J Biochem 126:48–53PubMedGoogle Scholar
  8. 8.
    Hua-Xiang Xia H, Talley NJ (2001) Apoptosis in gastric epithelium induced by helicobacter pylori infection: implications in gastric carcinogenesis. Am J Gastroenterol 96:16–26. doi:10.1111/j.1572-0241.2001.03447.x CrossRefGoogle Scholar
  9. 9.
    Burch LH, Yang IV, Whitehead GS, Chao FG, Berman KG, Schwartz DA (2006) The transcriptional response to lipopolysaccharide reveals a role for interferon-gamma in lung neutrophil recruitment. Am Physiol Soc 291:L667–L682Google Scholar
  10. 10.
    Kunimoto M (1994) Methylmercury induces apoptosis of rat cerebellar neurons in primary culture. Biochem Biophys Res Commun 204:310–317CrossRefPubMedGoogle Scholar
  11. 11.
    Miura K, Imura N, Clarkson TW (1987) Mechanism of methylmercury cytotoxicity. Crit Rev Toxicol 18:161–188CrossRefPubMedGoogle Scholar
  12. 12.
    Susumu N, Imura N (1983) Susceptibility of lipids to mercurials. J Appl Toxicol 13:131–134Google Scholar
  13. 13.
    Nagashima K, Fujii Y, Tsukamoto T, Nukuzuma S, Satoh M, Fujita M, Fujioka Y, Akagi H (1996) Apoptotic process of cerebellar degeneration in experimental methylmercury intoxication of rats. Acta Neuropathol 91:72–77CrossRefPubMedGoogle Scholar
  14. 14.
    Klaper R, Carter BJ, Richter CA, Drevnick PE, Sandheinrich MB, Tillitt DE (2008) Use of a 15 k gene microarray to determine gene expression changes in response to acute and chronic methylmercury exposure in the fathead minnow Pimephales promelas Rafinesque. J Fish Biol 72:2207–2280CrossRefGoogle Scholar
  15. 15.
    Viola G, Salvador A, Cecconet L, Basso G, Vedaldi D, DallAcqua F, Aloisi GG, Amelia M, Barbafina A, Latterini L (2007) Photophysical properties and photobiological behavior of amodiaquine, primaquine and chloroquine. Photochem Photobiol 83:1415–1427CrossRefPubMedGoogle Scholar
  16. 16.
    McConnell BB, Ghaleb AM, Nandan MO, Yang VW (2007) The diverse functions of Krüppel-like factors 4 and 5 in epithelial biology and pathobiology. Bioessays 29:549–557CrossRefPubMedGoogle Scholar
  17. 17.
    Gardiner MR, Gongora MM, Grimmond SM, Perkins AC (2007) A global role for zebrafish klf4 in embryonic erythropoiesis. Mech Dev 124:762–774. doi:10.1016/j.mod.2007.06.005 CrossRefPubMedGoogle Scholar
  18. 18.
    Costard AD, Vitezica ZG, Moreno CR, Elsen JM (2009) A dynamic deterministic model to optimize a multiple-trait selection scheme. J Anim Sci 87:885–894CrossRefPubMedGoogle Scholar
  19. 19.
    Mo D, Zhu Z, te Pas MFW, Li X, Yang S, Wang H, Wang H, Li K (2008) Characterization, expression profiles, intracellular distribution and association analysis of porcine PNAS-4 gene with production traits. BMC Genet 9:40CrossRefPubMedGoogle Scholar
  20. 20.
    Wang YF, Li Y, Liu B, Yu M, Fan B, Zhu MJ, Xiong TA, Li K (2005) Partial molecular characterization, polymorphism and chromosomal localization of the porcine PSMD4 gene. J Anim Breed Genet 122:247–250CrossRefPubMedGoogle Scholar
  21. 21.
    Wang Y, Suzuki H, Yokoo T, Tada-Iida K, Kihara R, Miura M, Watanabe K, Sone H, Shimano H, Toyoshima H, Yamada N (2004) WGEF is a novel RhoGEF expressed in intestine, liver, heart, and kidney. Biochem Biophys Res Commun 324:1053–1058. doi:10.1016/j.bbrc.2004.09.153 CrossRefPubMedGoogle Scholar
  22. 22.
    Koutnikova H, Campuzano V, Foury F, Dolle P, Cazzalini O, Koenig M (1997) Studies of human, mouse and yeast homologues indicate a mitochondrial function for frataxin. Nat Genet 16:345–351. doi:10.1038/ng0897-345 CrossRefPubMedGoogle Scholar
  23. 23.
    Rustin P, Bourgeron T, Parfait B, Chretien D, Munnich A (1997) Inborn errors of the Krebs cycle: a group of unusual mitochondrial diseases in human. Biochimica Biophysica Acta (BBA)—Mol Basis Dis 1361:185–197CrossRefGoogle Scholar
  24. 24.
    Gogvadze V, Orrenius S, Zhivotovsky B (2008) Mitochondria in cancer cells: what is so special about them? Trends Cell Biol 18:165–173. doi:10.1016/j.tcb.2008.01.006 CrossRefPubMedGoogle Scholar
  25. 25.
    Nunnari J, Marshall WF, Straight A, Murray A, Sedat JW, Walter P (1997) Mitochondrial transmission during mating in Saccharomyces cerevisiae is determined by mitochondrial fusion and fission and the intramitochondrial segregation of mitochondrial DNA. Mol Biol Cell 8:1233–1242PubMedGoogle Scholar
  26. 26.
    Shadel GS, Clayton DA (1997) Mitochondrial DNA maintenance in vertebrates. Annu Rev Biochem 66:409–435. doi:10.1146/annurev.biochem.66.1.409 CrossRefPubMedGoogle Scholar
  27. 27.
    Enriquez JA, Fernandez-Silva P, Garrido-Perez N, Lopez-Perez MJ, Perez-Martos A, Montoya J (1999) Direct regulation of mitochondrial RNA synthesis by thyroid hormone. Mol Cell Biol 19:657–670PubMedGoogle Scholar
  28. 28.
    Yaffe MP (1999) The machinery of mitochondrial inheritance and behavior. Science 283:1493–1497. doi:10.1126/science.283.5407.1493 CrossRefPubMedGoogle Scholar
  29. 29.
    Frank S, Gaume B, Bergmann-Leitner ES, Leitner WW, Robert EG, Catez F, Smith CL, Youle RJ (2001) The role of dynamin-related protein 1, a mediator of mitochondrial fission, in apoptosis. Dev Cell 1:515–525. doi:10.1016/S1534-5807(01)00055-7 CrossRefPubMedGoogle Scholar
  30. 30.
    Szabadkai G, Simoni AM, Chami M, Wieckowski MR, Youle RJ, Rizzuto R (2004) Drp-1-dependent division of the mitochondrial network blocks intraorganellar Ca2+ waves and protects against Ca2+-mediated apoptosis. Mol Cell 16:59–68. doi:10.1016/j.molcel.2004.09.026 CrossRefPubMedGoogle Scholar
  31. 31.
    Okamoto K, Shaw JM (2005) Mitochondrial morphology and dynamics in yeast and multicellular eukaryotes. Annu Rev Genet 39:503–536. doi:10.1146/annurev.genet.38.072902.093019 CrossRefPubMedGoogle Scholar
  32. 32.
    Goldenthal MJ, Marín-García J (2004) Mitochondrial signaling pathways: a receiver/integrator organelle. Mol Cell Biochem 262:1–16. doi:10.1023/B:MCBI.0000038228.85494.3b CrossRefPubMedGoogle Scholar
  33. 33.
    Bras M, Queenan B, Susin S (2005) Programmed cell death via mitochondria: different modes of dying. Biochemistry (Mosc) 70:231–239. doi:10.1007/s10541-005-0105-4 CrossRefGoogle Scholar
  34. 34.
    Zhao Q, Wang J, Levichkin IV, Stasinopoulos S, Ryan MT, Hoogenraad NJ (2002) A mitochondrial specific stress response in mammalian cells. EMBO J 21:4411–4419CrossRefPubMedGoogle Scholar
  35. 35.
    Danpure CJ (1995) How can the products of a single gene be localized to more than one intracellular compartment? Trends Cell Biol 5:230–238. doi:10.1016/S0962-8924(00)89016-9 CrossRefPubMedGoogle Scholar
  36. 36.
    Karniely S, Pines O (2005) Single translation—dual destination: mechanisms of dual protein targeting in eukaryotes. EMBO Rep 6:420. doi:10.1038/sj.embor.7400394 CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2009

Authors and Affiliations

  • Zhisheng Zhang
    • 1
  • Delin Mo
    • 1
  • Peiqing Cong
    • 1
  • Zuyong He
    • 1
  • Fei Ling
    • 2
  • Anning Li
    • 1
  • Yuna Niu
    • 1
  • Xiao Zhao
    • 1
  • Chunyan Zhou
    • 1
  • Yaosheng Chen
    • 1
  1. 1.State Key Laboratory of Biocontrol, School of Life SciencesSun Yat-Sen UniversityGuangzhouPeople’s Republic of China
  2. 2.School of Bioscience and BioengineeringSouth China University of TechnologyGuangzhouPeople’s Republic of China

Personalised recommendations