Molecular Biology Reports

, Volume 37, Issue 1, pp 159–164

The Xmn1 polymorphic site 5′ to the Gγ gene and its correlation to the Gγ:Aγ ratio, age at first blood transfusion and clinical features in β-Thalassemia patients from Western Iran

  • Hooshang Nemati
  • Zohreh Rahimi
  • Gholamreza Bahrami
Article

Abstract

β-Thalassemia is the most common single gene disorder in Iran and more than 25,000 affected individuals have been reported. It has been reported that in patients with β-thalassemia in the presence of Xmn1 polymorphic site the level of Hb F and Gγ: Aγ ratio is increased. The prevalence of Xmn1 polymorphic site, Gγ: Aγ ratio and Hb F in 197 β-thalassemia major patients from the Kermanshah Province of Iran were studied. The Xmn1 polymorphic site was determined by PCR-RFLP procedure. The levels of Gγ and Aγ chains were detected by HPLC. The percent of Hb F was determined using electrophoresis method. In β-thalassemia major patients the frequency of presence Xmn1 was 0.39. The mean of Gγ: Aγ ratio was found to be 2.5. In the present study it was found that in the presence of Xmn1 polymorphic site Gγ percent and Gγ: Aγ ratio were significantly increased (P = 0.01) and the clinical features such as splenomegaly and bone marrow expansion were significantly improved (P = 0.01). We found that in the presence of Xmn1 polymorphic site on both chromosomes (+/+) the level of Hb F tended to be increased compared to the absence of Xmn1 (−/−). The present investigation has studied the frequency of Xmn1 polymorphic site in β-thalassemia major patients from Western Iran and has revealed that the presence of this polymorphic site caused a positive influence on Hb F production and the Gγ percent which could improve the clinical symptoms of β-thalassemia patients.

Keywords

Thalassemia Gγ chain percent Xmn1 polymorphic site Splenectomy Facial bone deformity Age at first blood transfusion 

References

  1. 1.
    Olivieri NF, Brittenham GM (1997) Iron-chelating therapy and the treatment of thalassemia. Blood 89:739–761PubMedGoogle Scholar
  2. 2.
    Najmabadi H, Karimi-Nejad R, Sahebjam S, Pourfarzad F, Teimourian S, Sahebjam F, Amirizadeh N, Karimi-Nejad MH (2001) The β-thalassaemia mutation spectrum in the Iranian population. Hemoglobin 25:285–296. doi:10.1081/HEM-100105221 CrossRefPubMedGoogle Scholar
  3. 3.
    Rund D, Rachmilewitz E (2005) Beta-thalassemia. N Engl J Med 353:1135–1146. doi:10.1056/NEJMra050436 CrossRefPubMedGoogle Scholar
  4. 4.
    Charache S, Terrin ML, Moore RD et al (1995) Effects of hydroxyurea on the frequency of painful crises in sickle cell anemia. Investigators of the multicenter study of hydroxyurea in sickle cell anemia. N Engl J Med 332:1317–1322. doi:10.1056/NEJM199505183322001 CrossRefPubMedGoogle Scholar
  5. 5.
    Zimmerman S, Schultz W, Davis J et al (2004) Sustained long-term hematological efficacy of hydroxyurea at maximum tolerated dose in children with sickle cell disease. Blood 103:2039–2045. doi:10.1182/blood-2003-07-2475 CrossRefPubMedGoogle Scholar
  6. 6.
    Arruda VR, Lima CS, Saad ST, Costa F (1997) Successful use of hydroxyurea in beta-thalassemia major. N Engl J Med 336:964–965. doi:10.1056/NEJM199703273361318 CrossRefPubMedGoogle Scholar
  7. 7.
    Fathallah H, Sutton M, Atweh GF (2005) Pharmacological induction of fetal haemoglobin: why have not we been more successful in thalassemia? Ann N Y Acad Sci 1054:228–237. doi:10.1196/annals.1345.029 CrossRefPubMedGoogle Scholar
  8. 8.
    Ghanem M, Girodon E, Vidaud M et al (1992) A comprehensive scanning method for rapid detection of beta-globin gene mutation and polymorphisms. Hum Mutat 1:229–239. doi:10.1002/humu.1380010310 CrossRefPubMedGoogle Scholar
  9. 9.
    Peri KG, Gagnon J, Gagnon C et al (1997) Association of 158 (C→T) (Xmn1) DNA polymorphism in G [gamma]-globin promoter with delayed switchover from fetal to adult hemoglobin synthesis. Pediatr Res 41(2):214–217. doi:10.1203/00006450-199702000-00010 CrossRefPubMedGoogle Scholar
  10. 10.
    Fairbanks VF, Klee GG (1994) Biochemical aspects of hematology. In: Burtis CA, Ashwood ER (eds) Tietz text book of clinical chemistry. W.B. Saunders, Philadelphia, pp 2041–2042Google Scholar
  11. 11.
    Schneider RG (1974) Differentiation of electrophoretically similar hemoglobins such as S, D, G, and P; or A2, C, E, and O by electrophoresis of the globin chains. Clin Chem 20:1111–1115PubMedGoogle Scholar
  12. 12.
    Old JM, Higgs DR (1983) Gene analysis. In: Weatherall DJ (ed) Methods in hemotology. The thalassemias, vol 6. Churchill Livingstone, London, pp 74–101Google Scholar
  13. 13.
    Old JM (1996) Hemoglobinopathies. In: Elles R (ed) Methods in molecular medicine: molecular diagnosis of genetic disease. Humana press Inc, Totowa, pp 169–183CrossRefGoogle Scholar
  14. 14.
    Clegg JB, Naughton MA, Weeatherall DJ (1965) An improved method for the characterization of human hemoglobin mutants: identification of α2β2(95GLU) hemoglobin N(Baltimore). Nature 207:945–947Google Scholar
  15. 15.
    Garner C, Tatu T, Game L et al (2000) A candidate gene study of F cell levels in sibling pairs using a joint linkage and association analysis. GeneScreen 1:9–14. doi:10.1046/j.1466-9218.2000.00001.x CrossRefGoogle Scholar
  16. 16.
    Nadkarni A, Gorakshakar AC, Lu CY, Krishnamoorthy R, Ghosh K, Colah R, Mohanty D (2001) Molecular pathogenesis and clinical variability of beta-thalassemia syndromes among Indians. Am J Hematol 68:75–80. doi:10.1002/ajh.1156 CrossRefPubMedGoogle Scholar
  17. 17.
    Karimi M, Yarmohammadi H, Farjadian S, Mighaddam Z, cappeliini MD, Giordano PC (2002) Beta thalassemia intermedia from southern Iran: IVSII.1(G:A) is the prevalent thalassemia intermedia allele. Hemoglobin 26(2):147–154CrossRefPubMedGoogle Scholar
  18. 18.
    Gilman JG, Huisman THJ (1985) DNA sequence variation associated with elevated fetal Gγ globin production. Blood 66:783–787PubMedGoogle Scholar
  19. 19.
    Garner C, Tatu T, Best S, Creary L, Thein S (2002) Evidence of genetic interaction between the β-globin complex and chromosome 8q in the expression of fetal hemoglobin. Am J Hum Genet 70(3):793–799. doi:10.1086/339248 CrossRefPubMedGoogle Scholar
  20. 20.
    Steinberg MH, Forget BG, Higgs DR, Nagel RL (eds) (2001) Disorders of hemoglobin: genetics, pathophysiology, and clinical management. Cambridge University press, Cambridge, pp 356–388Google Scholar
  21. 21.
    Rahimi Z, Karimi M, Haghshenass M, Merat A (2003) Beta globin gene cluster haplotypes in sickle cell patients from southwest Iran. Am J Hematol 74(3):156–160. doi:10.1002/ajh.10422 CrossRefPubMedGoogle Scholar
  22. 22.
    Shimmoto MM, Vicari P, Fernandes AC, Guimarães GS, Figueiredo MS (2006) Xmn1 polymorphism is associated with fetal hemoglobin levels in hypoplastic syndromes. Sao Paulo Med J 124(2):110–111. doi:10.1590/S1516-31802006000200012 CrossRefPubMedGoogle Scholar
  23. 23.
    Ballas SK, Talacki CA, Adachi K, Schwartz E, Surrey S, Rappaport E (1991) The Xmn1 site (−158, C→T) 5′ to the G gamma gene: correlation with the Senegalese haplotype and G gamma globin expression. Hemoglobin 15(5):393–405. doi:10.3109/03630269108998859 CrossRefPubMedGoogle Scholar
  24. 24.
    Fucharoen S, Siritanaratkul N, Winichagoon P, Chowthaworn J, Siriboon W, Muangsup W, Chaicharoen S, Poolsup N, Chindavijak B, Pootrakul P, Piankijagum A, Schechter AN, Rogers GP (1996) Hydroxyurea increases hemoglobin F levels and improves the effectiveness of erythropoiesis in β-thalassaemia/hemoglobinE disease. Blood 87:887–892PubMedGoogle Scholar
  25. 25.
    Hoppe C, Vichinsky E, Lewis B, Foote D, Styles L (1999) Hydroxyurea and sodium phenylbutyrate therapy in thalassaemia intermedia. Am J Hematol 62:221–227. doi:10.1002/(SICI)1096-8652(199912)62:4<221::AID-AJH4>3.0.CO;2-R CrossRefPubMedGoogle Scholar
  26. 26.
    Rodgers GP, Saunthararajah Y (2000) Advances in experimental treatment of beta-thalassaemia. Expert Opin Investig Drugs 10:925–934. doi:10.1517/13543784.10.5.925 CrossRefGoogle Scholar
  27. 27.
    Rund D, Rachmilewitz E (2000) New trends in the treatment of β-thalassaemia. Crit Rev Oncol Hematol 33:105–118. doi:10.1016/S1040-8428(99)00058-X CrossRefPubMedGoogle Scholar
  28. 28.
    Mohamed B, Serge P, Mohand TA et al (2007) Decreased transfusion needs associated with hydroxyurea therapy in Algerian patients with thalassemia major or intermedia. Transfusion 47(10):1830–1836. doi:10.1111/j.1537-2995.2007.01399.x CrossRefGoogle Scholar
  29. 29.
    Alebouyeh M, Moussavi F, Haddad-Deylami H, Vossough P (2004) Hydroxyurea in the treatment of major beta-thalassemia and importance of genetic screening. Ann Hematol 83(7):430–433. doi:10.1007/s00277-003-0836-5 CrossRefPubMedGoogle Scholar
  30. 30.
    Bandyopadhyay S, Roychowdhury K, Chandra S, Das M, Dasgupta UB (2001) Variable severity of β-thalassemia patients of Eastern India: effect of α-thalassemia and Xmn1 polymorphism. Clin Exp Med 1(3):155–159. doi:10.1007/s10238-001-8028-x CrossRefPubMedGoogle Scholar
  31. 31.
    Banani SA, Bahador A (1994) Management of thalassemia major by partial splenectomy. Pediatr Surg Int 9:350–352. doi:10.1007/BF01685998 CrossRefGoogle Scholar
  32. 32.
    Nadkarni A, Ghosh K, Gorakshaker A, Colah R, Mohanty D (1999) Variable clinical severity of Hb E β-thalassemia among Indians. JAPI 47(10):966–968PubMedGoogle Scholar
  33. 33.
    Borgna-Pignatti G, Galanello R (2004) Thalassemias and related disorders: quantitative disorders of hemoglobin. In: Wintrobe’s Clinical Hematology, 11th edn. Lippincott William & Wilkins, Philadelphia, 1319–1365Google Scholar
  34. 34.
    Jensen CE, Tuck SM, Agnew JE et al (1998) High prevalence of low bone mass in thalassemia major. Br J Haematol 103(4):911–915. doi:10.1046/j.1365-2141.1998.01108.x CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2009

Authors and Affiliations

  • Hooshang Nemati
    • 1
  • Zohreh Rahimi
    • 2
    • 3
  • Gholamreza Bahrami
    • 4
  1. 1.Department of Biochemistry, Pharmacy SchoolKermanshah University of Medical SciencesKermanshahIran
  2. 2.Medical Biology Research Center, Medical SchoolKermanshah University of Medical SciencesKermanshahIran
  3. 3.Department of Biochemistry, Medical SchoolKermanshah University of Medical SciencesKermanshahIran
  4. 4.Department of Pharmacology, Pharmacy SchoolKermanshah University of Medical SciencesKermanshahIran

Personalised recommendations