Advertisement

Molecular Biology Reports

, Volume 37, Issue 3, pp 1191–1195 | Cite as

High Mobility Group Box 1: a potential therapeutic target for systemic lupus erythematosus

  • Hai-Feng Pan
  • Guo-Cui Wu
  • Wei-Ping Li
  • Xiang-Pei Li
  • Dong-Qing Ye
Article

Abstract

High Mobility Group Box 1 (HMGB1) is a nuclear protein participating in chromatin architecture and transcriptional regulation. Recently, there is increasing evidence that HMGB1 contributes to the pathogenesis of chronic inflammatory and autoimmune diseases due to its pro-inflammatory and immunostimulatory properties. Elevated expression of HMGB1 was found in the sera of patients and mice with systemic lupus erythematosus (SLE). In addition, it has been shown that HMGB1 may act as a proinflammatory mediator in antibody-induced kidney damage in SLE. All theses findings suggest that HMGB1 have important biological effects in autoimmunity that might be a promising therapeutic target for SLE. In this review, we will briefly discuss the biological features of HMGB1 and summarize recent advances on the role of HMGB1 in the pathogenesis and treatment of SLE.

Keywords

Autoantibodies Autoimmune HMGB1 Nucleosomes Systemic lupus erythematosus Therapeutic target 

Notes

Acknowledgments

This work was partly supported by grants from the National Natural Science Foundation of China (30571608, 30771848) and the key program of the National Natural Science Foundation of China (30830089).

References

  1. 1.
    Pan HF, Ye DQ, Li XP (2008) Type 17 T-helper cells might be a promising therapeutic target for systemic lupus erythematosus. Nat Clin Pract Rheumatol 4:352–353PubMedGoogle Scholar
  2. 2.
    Pan HF, Fang XH, Li WX et al (2008) Radix astragali: a promising new treatment option for systemic lupus erythematosus. Med Hypotheses 71:311–312. doi: 10.1016/j.mehy.2008.03.011 CrossRefPubMedGoogle Scholar
  3. 3.
    Cook HT, Botto M (2006) Mechanisms of disease: the complement system and the pathogenesis of systemic lupus erythematosus. Nat Clin Pract Rheumatol 2:330–337. doi: 10.1038/ncprheum0191 CrossRefPubMedGoogle Scholar
  4. 4.
    Voll RE, Urbonaviciute V, Herrmann M et al (2008) High mobility group box 1 in the pathogenesis of inflammatory and autoimmune diseases. Isr Med Assoc J 10:26–28PubMedGoogle Scholar
  5. 5.
    Jiang W, Pisetsky DS (2008) Expression of high mobility group protein 1 in the sera of patients and mice with systemic lupus erythematosus. Ann Rheum Dis 67:727–728. doi: 10.1136/ard.2007.074484 CrossRefPubMedGoogle Scholar
  6. 6.
    Qing X, Pitashny M, Thomas DB et al (2008) Pathogenic anti-DNA antibodies modulate gene expression in mesangial cells: involvement of HMGB1 in anti-DNA antibody-induced renal injury. Immunol Lett 121:61–73. doi: 10.1016/j.imlet.2008.08.007 CrossRefPubMedGoogle Scholar
  7. 7.
    Goodwin GH, Sanders C, Johns EW (1973) A new group of chromatin-associated proteins with a high content of acidic and basic amino acids. Eur J Biochem 38:14–19. doi: 10.1111/j.1432-1033.1973.tb03026.x CrossRefPubMedGoogle Scholar
  8. 8.
    Ferrari S, Finelli P, Rocchi M et al (1996) The active gene that encodes human high mobility group 1 protein (HMG1) contains introns and maps to chromosome 13. Genomics 35:367–371. doi: 10.1006/geno.1996.0369 CrossRefPubMedGoogle Scholar
  9. 9.
    Stros M, Dixon GH (1993) A retropseudogene for non-histone chromosomal protein HMG-1. Biochim Biophys Acta 1172:231–235PubMedGoogle Scholar
  10. 10.
    Wen L, Huang JK, Johnson BH et al (1989) A human placental cDNA clone that encodes nonhistone chromosomal protein HMG-1. Nucleic Acids Res 17:1197–1214. doi: 10.1093/nar/17.3.1197 CrossRefPubMedGoogle Scholar
  11. 11.
    Walker JM, Gooderham K, Hastings JR et al (1980) The primary structures of non-histone chromosomal proteins HMG 1 and 2. FEBS Lett 122:264–270. doi: 10.1016/0014-5793(80)80453-4 CrossRefPubMedGoogle Scholar
  12. 12.
    Paonessa G, Frank R, Cortese R (1987) Nucleotide sequence of rat liver HMG1 cDNA. Nucleic Acids Res 15:9077. doi: 10.1093/nar/15.21.9077 CrossRefPubMedGoogle Scholar
  13. 13.
    Yotov WV, St-Arnaud R (1992) Nucleotide sequence of a mouse cDNA encoding the nonhistone chromosomal high mobility group protein-1 (HMG1). Nucleic Acids Res 20:3516. doi: 10.1093/nar/20.13.3516 CrossRefPubMedGoogle Scholar
  14. 14.
    Huttunen HJ, Rauvala H (2004) Amphoterin as an extracellular regulator of cell motility: from discovery to disease. J Intern Med 255:351–366. doi: 10.1111/j.1365-2796.2003.01301.x CrossRefPubMedGoogle Scholar
  15. 15.
    van Beijnum JR, Buurman WA, Griffioen AW (2008) Convergence and amplification of toll-like receptor (TLR) and receptor for advanced glycation end products (RAGE) signaling pathways via high mobility group B1 (HMGB1). Angiogenesis 11:91–99. doi: 10.1007/s10456-008-9093-5 CrossRefPubMedGoogle Scholar
  16. 16.
    Yang H, Wang H, Czura CJ et al (2005) The cytokine activity of HMGB1. J Leukoc Biol 78:1–8. doi: 10.1189/jlb.1104648 CrossRefPubMedGoogle Scholar
  17. 17.
    Mosevitsky MI, Novitskaya VA, Iogannsen MG et al (1989) Tissue specificity of nucleo-cytoplasmic distribution of HMG1 and HMG2 proteins and their probable functions. Eur J Biochem 185:303–310. doi: 10.1111/j.1432-1033.1989.tb15116.x CrossRefPubMedGoogle Scholar
  18. 18.
    Lotze MT, Tracey KJ (2005) High-mobility group box 1 protein (HMGB1): nuclear weapon in the immune arsenal. Nat Rev Immunol 5:331–342. doi: 10.1038/nri1594 CrossRefPubMedGoogle Scholar
  19. 19.
    Bonaldi T, Talamo F, Scaffidi P et al (2003) Monocytic cells hyperacetylate chromatin protein HMGB1 to redirect it towards secretion. EMBO J 22:5551–5560. doi: 10.1093/emboj/cdg516 CrossRefPubMedGoogle Scholar
  20. 20.
    Wang H, Bloom O, Zhang M et al (1999) HMG-1 as a late mediator of endotoxin lethality in mice. Science 285:248–251. doi: 10.1126/science.285.5425.248 CrossRefPubMedGoogle Scholar
  21. 21.
    Bell CW, Jiang W, Reich CF et al (2006) The extracellular release of HMGB1 during apoptotic cell death. Am J Physiol Cell Physiol 291:C1318–C1325. doi: 10.1152/ajpcell.00616.2005 CrossRefPubMedGoogle Scholar
  22. 22.
    Jiang W, Bell CW, Pisetsky DS (2007) The relationship between apoptosis and HMGB1 release from murine macrophages stimulated with LPS or poly (I:C). J Immunol 178:6495–6503PubMedGoogle Scholar
  23. 23.
    Stern D, Yan SD, Yan SF et al (2002) Receptor for advanced glycation endproducts: a multiligand receptor magnifying cell stress in diverse pathologic settings. Adv Drug Deliv Rev 54:1615–1625. doi: 10.1016/S0169-409X(02)00160-6 CrossRefPubMedGoogle Scholar
  24. 24.
    Yang H, Wang H, Tracey KJ (2001) HMG-1 rediscovered as a cytokine. Shock 15:247–253. doi: 10.1097/00024382-200115040-00001 CrossRefPubMedGoogle Scholar
  25. 25.
    Wang H, Yang H, Czura CJ et al (2001) HMGB1 as a late mediator of lethal systemic inflammation. Am J Respir Crit Care Med 164:1768–1773PubMedGoogle Scholar
  26. 26.
    Yang H, Wang H, Czura CJ et al (2002) HMGB1 as a cytokine and therapeutic target. J Endotoxin Res 8:469–472. doi: 10.1179/096805102125001091 CrossRefPubMedGoogle Scholar
  27. 27.
    Pisetsky DS, Erlandsson-Harris H, Andersson U (2008) High-mobility group box protein 1 (HMGB1): an alarmin mediating the pathogenesis of rheumatic disease. Arthritis Res Ther 10:209. doi: 10.1186/ar2440 CrossRefPubMedGoogle Scholar
  28. 28.
    Curtin JF, Liu N, Candolfi M et al (2009) HMGB1 mediates endogenous TLR2 activation and brain tumor regression. PLoS Med 6:e10. doi: 10.1371/journal.pmed.1000010 CrossRefPubMedGoogle Scholar
  29. 29.
    Harris HE, Raucci A (2006) Alarmin(g) news about danger: workshop on innate danger signals and HMGB1. EMBO Rep 7:774–778PubMedGoogle Scholar
  30. 30.
    Kokkola R, Li J, Sundberg E et al (2003) Successful treatment of collagen-induced arthritis in mice and rats by targeting extracellular high mobility group box chromosomal protein 1 activity. Arthritis Rheum 48:2052–2058. doi: 10.1002/art.11161 CrossRefPubMedGoogle Scholar
  31. 31.
    Taniguchi N, Kawahara K, Yone K et al (2003) High mobility group box chromosomal protein 1 plays a role in the pathogenesis of rheumatoid arthritis as a novel cytokine. Arthritis Rheum 48:971–981. doi: 10.1002/art.10859 CrossRefPubMedGoogle Scholar
  32. 32.
    Urbonaviciute V, Furnrohr BG, Weber C et al (2007) Factors masking HMGB1 in human serum and plasma. J Leukoc Biol 81:67–74. doi: 10.1189/jlb.0306196 CrossRefPubMedGoogle Scholar
  33. 33.
    Urbonaviciute V, Fürnrohr BG, Meister S et al (2008) Induction of inflammatory and immune responses by HMGB1-nucleosome complexes: implications for the pathogenesis of SLE. J Exp Med. doi: 10.1084/jem.20081165 PubMedGoogle Scholar
  34. 34.
    Scaffidi P, Misteli T, Bianchi ME (2002) Release of chromatin protein HMGB1 by necrotic cells triggers inflammation. Nature 418:191–195. doi: 10.1038/nature00858 CrossRefPubMedGoogle Scholar
  35. 35.
    Ayer LM, Senecal JL, Martin L et al (1994) Antibodies to high mobility group proteins in systemic sclerosis. J Rheumatol 21:2071–2075PubMedGoogle Scholar
  36. 36.
    Rosenberg AM, Cordeiro DM (2000) Relationship between sex and antibodies to high mobility group proteins 1 and 2 in juvenile idiopathic arthritis. J Rheumatol 27:2489–2493PubMedGoogle Scholar
  37. 37.
    Sobajima J, Ozaki S, Uesugi H et al (1998) Prevalence and characterization of perinuclear anti-neutrophil cytoplasmic antibodies (P-ANCA) directed against HMG1 and HMG2 in ulcerative colitis (UC). Clin Exp Immunol 111:402–407. doi: 10.1046/j.1365-2249.1998.00491.x CrossRefPubMedGoogle Scholar
  38. 38.
    Santoro P, De Andrea M, Migliaretti G et al (2002) High prevalence of autoantibodies against the nuclear high mobility group (HMG) protein SSRP1 in sera from patients with systemic lupus erythematosus, but not other rheumatic diseases. J Rheumatol 29:90–93PubMedGoogle Scholar
  39. 39.
    Fineschi S, Borghi MO, Riboldi P et al (2004) Prevalence of autoantibodies against structure specific recognition protein 1 in systemic lupus erythematosus. Lupus 13:463–468. doi: 10.1191/0961203304lu1049oa CrossRefPubMedGoogle Scholar
  40. 40.
    Uesugi H, Ozaki S, Sobajima J et al (1998) Prevalence and characterization of novel pANCA, antibodies to the high mobility group non-histone chromosomal proteins HMG1 and HMG2, in systemic rheumatic diseases. J Rheumatol 25:703–709PubMedGoogle Scholar
  41. 41.
    Tian J, Avalos AM, Mao SY et al (2007) Toll-like receptor 9-dependent activation by DNA-containing immune complexes is mediated by HMGB1 and RAGE. Nat Immunol 8:487–496. doi: 10.1038/ni1457 CrossRefPubMedGoogle Scholar
  42. 42.
    Yang H, Ochani M, Li J et al (2004) Reversing established sepsis with antagonists of endogenous high-mobility group box 1. Proc Natl Acad Sci USA 101:296–301. doi: 10.1073/pnas.2434651100 CrossRefPubMedGoogle Scholar
  43. 43.
    Ulloa L, Ochani M, Yang H et al (2002) Ethyl pyruvate prevents lethality in mice with established lethal sepsis and systemic inflammation. Proc Natl Acad Sci USA 99:12351–12356. doi: 10.1073/pnas.192222999 CrossRefPubMedGoogle Scholar
  44. 44.
    Mao SY, Xu Y, Zhang J et al (2007) Antagonizing HMGB1 inhibits proteinuria in a murine model of lupus-like disease. J Immunol 178:131.24Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2009

Authors and Affiliations

  • Hai-Feng Pan
    • 1
  • Guo-Cui Wu
    • 2
  • Wei-Ping Li
    • 2
  • Xiang-Pei Li
    • 3
  • Dong-Qing Ye
    • 1
  1. 1.Department of Epidemiology and Biostatistics, School of Public HealthAnhui Medical UniversityHefeiPeople’s Republic of China
  2. 2.Department of PharmacologyAnhui Medical UniversityHefeiPeople’s Republic of China
  3. 3.Department of RheumatologyAnhui Provincial HospitalHefeiPeople’s Republic of China

Personalised recommendations