Molecular Biology Reports

, Volume 37, Issue 3, pp 1183–1190 | Cite as

ThPOD3, a truncated polypeptide from Tamarix hispida, conferred drought tolerance in Escherichia coli

  • Xiao-Hong Guo
  • Jing Jiang
  • Bai-Chen Wang
  • Hui-Yu Li
  • Yu-Cheng Wang
  • Chuan-Ping Yang
  • Gui-Feng LiuEmail author


The ThPOD1 gene encodes a peroxidase and was isolated from a Tamarix hispida NaCl-stress root cDNA library. We found that ThPOD1 expression could be induced by abiotic stresses such as cold, salt, drought and exogenous abscisic acid. These findings suggested that ThPOD1 might be involved in the plant response to environmental stresses and ABA treatment. To elucidate the function of this gene, recombinant plasmids expressing full-length ThPOD1 as well as ThPOD2 (aa 41-337), and ThPOD3 (aa 73-337) truncated polypeptides were constructed. SDS–PAGE and Western blot analyses of the fusion proteins revealed that the molecular weights of ThPOD1, ThPOD2 and ThPOD3 were ~57, ~50 and ~47 kDa, respectively. Stress assays of E. coli treated with the recombinant plasmids indicated that ThPOD3 could improve resistance to drought stress. This finding could potentially be used to improve plant tolerance to drought stress via gene transfer.


Peroxidase qRT-PCR Prokaryotic expression Abiotic stress Tamarix hispida 



This study was supported by national natural science foundation (Grant No. 30571509), Heilongjiang province scientific and technological project (Grant No. GB06B303 and WB07N02).


  1. 1.
    Passardi F, Cosio C, Penel C, Dunand C (2005) Peroxidases have more functions than a Swiss army knife. Plant Cell Rep 24:255–265. doi: 10.1007/s00299-005-0972-6 CrossRefPubMedGoogle Scholar
  2. 2.
    Bakalovic N, Passardi F, Ioannidis V, Cosio C, Penel C, Falquet L et al (2006) PeroxiBase: a class III plant peroxidase database. Phytochemistry 67:534–539. doi: 10.1016/j.phytochem.2005.12.020 CrossRefPubMedGoogle Scholar
  3. 3.
    Morohashi Y (2002) Peroxidase activity develops in the micropylar endosperm of tomato seeds prior to radicle protrusion. J Exp Bot 53:1643–1650. doi: 10.1093/jxb/erf012 CrossRefPubMedGoogle Scholar
  4. 4.
    Cosgrove DJ (2001) Wall structure and wall loosening. A look backwards and forwards. Plant Physiol 125:131–134. doi: 10.1104/pp.125.1.131 CrossRefPubMedGoogle Scholar
  5. 5.
    Passardi F, Penel C, Dunand C (2004) Performing the paradoxical: how plant peroxidases modify the cell wall. Trends Plant Sci 9:534–540. doi: 10.1016/j.tplants.2004.09.002 CrossRefPubMedGoogle Scholar
  6. 6.
    Lopez-Serrano M, Fernandez MD, Pomar F, Pedreno MA, Ros Barcelo A (2004) Zinnia elegans uses the same peroxidase isoenzyme complement for cell wall lignification in both single-cell tracheary elements and xylem vessels. J Exp Bot 55:423–431. doi: 10.1093/jxb/erh036 CrossRefPubMedGoogle Scholar
  7. 7.
    Ranieri A, Petacco F, Castagna A, Soldatini GF (2000) Redox state and peroxidase system in sunflower plants exposed to ozone. Plant Sci 159:159–167. doi: 10.1016/S0168-9452(00)00352-6 CrossRefPubMedGoogle Scholar
  8. 8.
    Hiraga S, Sasaki K, Ito H, Ohashi Y, Matsu HI (2001) A large family of class III plant peroxidases. Plant Cell Physiol 42:462–468. doi: 10.1093/pcp/pce061 CrossRefPubMedGoogle Scholar
  9. 9.
    Delannoy E, Al Jallou, Assigbetse K, Marmey P, Geiger JP, Lherminier J et al (2003) Activity of class III peroxidases in the defense of cotton to bacterial blight. Mol Plant Microbe Interact 16:1030–1038. doi: 10.1094/MPMI.2003.16.11.1030 CrossRefPubMedGoogle Scholar
  10. 10.
    Dowd PF, Johnson ET (2005) Association of a specific cationic peroxidase isozyme with maize stress and disease resistance responses, genetic identification, and identification of a cDNA coding for the isozyme. J Agric Food Chem 53:4464–4470. doi: 10.1021/jf0404750 CrossRefPubMedGoogle Scholar
  11. 11.
    Lo’pez-Molina D, Heering HA, Smulevich G, Tudela J, Thorneley RN, Garc’ıa-Ca’novas F et al (2003) Purification and characterization of a new cationic peroxidase from fresh flowers of Cynara scolymus L. J Inorg Biochem 94:243–254. doi: 10.1016/S0162-0134(02)00650-5 CrossRefGoogle Scholar
  12. 12.
    Marjamaa K, Hilde’n K, Kukkola E, Lehtonen M, Holkeri H, Haapaniemi P et al (2006) Cloning, characterization and localization of three novel class III peroxidases in lignifying xylem of Norway spruce (Picea abies). Plant Mol Biol 61:719–732. doi: 10.1007/s11103-006-0043-6 CrossRefPubMedGoogle Scholar
  13. 13.
    Tognolli M, Penel C, Greppin H, Simon P (2002) Analysis and expression of the class III peroxidase large gene family in Arabidopsis thaliana. Gene 288:129–138. doi: 10.1016/S0378-1119(02)00465-1 CrossRefPubMedGoogle Scholar
  14. 14.
    Hiraga S, Yamamoto K, Ito H, Sasaki K, Matsui H, Honma M et al (2000) Diverse expression profiles of 21 rice peroxidase genes. FEBS Lett 471:245–250. doi: 10.1016/S0014-5793(00)01409-5 CrossRefPubMedGoogle Scholar
  15. 15.
    Valerio L, De Meyer M, Penel C, Dunand C (2004) Expression analysis of the Arabidopsis peroxidase multigenic family. Phytochemistry 65:1331–1342. doi: 10.1016/j.phytochem.2004.04.017 CrossRefPubMedGoogle Scholar
  16. 16.
    Li HY, Wang YC, Jiang J, Liu GF, Gao CQ, Yang CP (2009) Identification of genes responsive to salt stress on Tamarix hispida roots. Gene 433(1–2):65–71CrossRefPubMedGoogle Scholar
  17. 17.
    Liu Y, Zheng YZ (2005) PM2, a group 3 LEA protein from soybean, and its 22-mer repeating region confer salt tolerance in Escherichia coli. Biochem Biophys Res Commun 331:325–332. doi: 10.1016/j.bbrc.2005.03.165 CrossRefPubMedGoogle Scholar
  18. 18.
    Jaakola L, Pirttila AM, Halonen M, Hohtola A (2001) Isolation of high quality RNA from bilberry (Vaccinium myrtillus L.) fruit. Mol Biotechnol 19:201–213. doi: 10.1385/MB:19:2:201 CrossRefPubMedGoogle Scholar
  19. 19.
    Sambrook J, Fritsch EF, Maniatis T (1989) Molecular cloning: a laboratory manual, 2nd edn. Cold Spring Harbor Laboratory Press, Cold Spring HarborGoogle Scholar
  20. 20.
    Chen JM, Gao C, Shi Q, Shan B, Lei YJ, Dong CF et al (2008) Different expression patterns of CK2 subunits in the brains of experimental animals and patients with transmissible spongiform encephalopathies. Arch Virol 153:1013–1020. doi: 10.1007/s00705-008-0084-z CrossRefPubMedGoogle Scholar
  21. 21.
    Park SY, Ryu SH, Kwon SY, Lee HS, Kim JG, Kwak SS (2003) Differential expression of six novel peroxidase cDNAs from cell cultures of sweetpotato in response to stress. Mol Genet Genomics 269:542–552. doi: 10.1007/s00438-003-0862-y CrossRefPubMedGoogle Scholar
  22. 22.
    Parra-Lobato MC, Alvarez-Tinaut MC, Gomez-Jimenez MC (2007) Cloning and characterization of a root sunflower peroxidase gene putatively involved in cell elongation. J Plant Physiol 164:1688–1692. doi: 10.1016/j.jplph.2007.05.006 CrossRefPubMedGoogle Scholar
  23. 23.
    Agrawal GK, Rakwal R, Jwa NS, Agrawal VP (2002) Characterization of a novel rice gene OsATX and modulation of its expression by components of the stress signaling pathways. Physiol Plant 116:87–95. doi: 10.1034/j.1399-3054.2002.1160111.x CrossRefPubMedGoogle Scholar
  24. 24.
    Shinozaki K, Yamaguchi-Shinozakiy K, Sekiz M (2003) Regulatory network of gene expression in the drought and cold stress responses. Curr Opin Plant Biol 6:410–417. doi: 10.1016/S1369-5266(03)00092-X CrossRefPubMedGoogle Scholar
  25. 25.
    Chen M, Wang QY, Cheng XG, Xu ZS, Li LC, Ye XG et al (2007) GmDREB2, a soybean DRE-binding transcription factor, conferred drought and high-salt tolerance in transgenic plants. Biochem Biophys Res Commun 353:299–305. doi: 10.1016/j.bbrc.2006.12.027 CrossRefPubMedGoogle Scholar
  26. 26.
    Lan Y, Cai D, Zheng YZ (2005) Expression of three different group soybean lea genes enhanced stress tolerance in Escherichia coli. Acta Bot SinGoogle Scholar
  27. 27.
    Yamada A, Sekifuchi M, Mimura T, Ozeki Y (2002) The role of plant CCTa in salt- and osmotic-stress tolerance. Plant Cell Physiol 43:1043–1048. doi: 10.1093/pcp/pcf120 CrossRefPubMedGoogle Scholar
  28. 28.
    Noctor G, Foyer CH (1998) Ascorbate and glutathione: keeping active oxygen under control. Annu Rev Plant Biol 49:249–279. doi: 10.1146/annurev.arplant.49.1.249 CrossRefGoogle Scholar
  29. 29.
    Foyer CH, Lopez-Delgado H, Dat JF, Scott IM (1997) Hydrogen peroxide and glutathione-associated mechanisms of acclimatory stress tolerance and signaling. Physiol Plant 100:241–254. doi: 10.1111/j.1399-3054.1997.tb04780.x CrossRefGoogle Scholar
  30. 30.
    Schweizer P (2008) Tissue-specific expression of a defence-related peroxidase in transgenic wheat potentiates cell death in pathogen-attacked leaf epidermis. Mol Plant Pathol 9:45–57PubMedGoogle Scholar
  31. 31.
    Kim YH, Kim CY, Song WK, Park DS, Kwon SY, Lee HS et al (2008) Overexpression of sweetpotato swpa4 peroxidase results in increased hydrogen peroxide production and enhances stress tolerance in tobacco. Planta 227:867–881. doi: 10.1007/s00425-007-0663-3 CrossRefPubMedGoogle Scholar
  32. 32.
    Mittler R, Zilinskas BA (1992) Molecular cloning and characterization of a gene encoding pea cytosolic ascorbate peroxidase. J Biol Chem 267:21802–21807PubMedGoogle Scholar
  33. 33.
    Donahue JL, Okpodu CM, Cramer CL, Grabau EA, Alscher RG (1997) Responses of antioxidants to paraquat in pea leaves. Plant Physiol 113:249–257PubMedGoogle Scholar
  34. 34.
    Karpinski S, Escobar C, Karpinska B, Creissen G, Mullineaux PM (1997) Photosynthetic electron transport regulates the expression of cytosolic ascorbate peroxidase genes in Arabidopsis during excess light stress. Plant Cell 9:627–640CrossRefPubMedGoogle Scholar
  35. 35.
    Karpinski S, Reynolds H, Karpinska B, Wingsle G, Creissen G, Mullineaux P (1999) Systemic signaling and acclimation in response to excess excitation energy in Arabidopsis. Science 284:654–657. doi: 10.1126/science.284.5414.654 CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2009

Authors and Affiliations

  • Xiao-Hong Guo
    • 1
  • Jing Jiang
    • 1
  • Bai-Chen Wang
    • 1
  • Hui-Yu Li
    • 1
  • Yu-Cheng Wang
    • 1
  • Chuan-Ping Yang
    • 1
  • Gui-Feng Liu
    • 1
    Email author
  1. 1.Key Laboratory of Forest Tree Genetic Improvement and Biotechnology, Ministry of EducationNortheast Forestry UniversityHarbinChina

Personalised recommendations