Molecular Biology Reports

, 36:2365 | Cite as

A novel leucine-rich repeat receptor-like kinase gene in potato, StLRPK1, is involved in response to diverse stresses

Article

Abstract

A potato gene, StLRPK1 (Solanum tuberosum L. leucine-rich-repeat receptor-like protein kinases 1), encoding a protein belonging to leucine-rich repeat receptor-like kinases (LRR-RLKs) was identified. It encodes 796 amino acids with 88% of identity to SRF3 of Arabidopsis thaliana and contains a signal peptide, five LRR motifs, a transmembrane domain, two proline-rich regions and a serine/threonine protein kinase domain. The transcripts were present at high levels in flowers and young leaves, while low in other tested organs. The mRNA of StLRPK1 was inducible in potato leaves by Phytophthora infestans, a pathogen causing late blight disease, and showed different profiles after treatment with salicylic acid, methyl jasmonate, ethylene, abscissic acid, wounding, 40°C, 4°C and a salinity stress. The results suggest that StLRPK1 may participate in the responses against environmental stresses and disease resistance in potato.

Keywords

StLRPK1 Leucine-rich-repeat receptor-like kinases RACE Biotic and abiotic stresses Solanum tuberosum L. 

References

  1. 1.
    Kruijt M, De Kock MJD, De Wit PJGM (2005) Receptor-like proteins involved in plant disease resistance. Mol Plant Pathol 6:85–97. doi:10.1111/j.1364-3703.2004.00264.x CrossRefGoogle Scholar
  2. 2.
    Zhang XR (1998) Leucine-rich repeat receptor-like kinases in plants. Plant Mol Biol Rep 16:301–311. doi:10.1023/A:1007540610933 CrossRefGoogle Scholar
  3. 3.
    Walker JC (1994) Structure and function of the receptor-like protein kinases of higher plants. Plant Mol Biol 26:1599–1609. doi:10.1007/BF00016492 CrossRefPubMedGoogle Scholar
  4. 4.
    Morris ER, Walker JC (2003) Receptor-like protein kinases: the keys to response. Curr Opin Plant Biol 6:339–342. doi:10.1016/S1369-5266(03)00055-4 CrossRefPubMedGoogle Scholar
  5. 5.
    Yin Y, Wu DY, Chory J (2002) Plant receptor kinases: system in receptor identified. Proc Natl Acad Sci USA 99:9090–9092. doi:10.1073/pnas.152330799 CrossRefPubMedGoogle Scholar
  6. 6.
    Diévart A, Clark SE (2003) Using mutant alleles to determine the structure and function of leucine-rich repeat receptor-like kinases. Curr Opin Plant Biol 6:507–516. doi:10.1016/S1369-5266(03)00089-X CrossRefPubMedGoogle Scholar
  7. 7.
    Song WY, Wang GL, Chen LL, Kim HS, Pi LY, Holsten T, Gardner J, Wang B, Zhai WX, Zhu LH, Fauquet C, Ronald P (1995) A receptor kinase-like protein encoded by the rice disease resistance gene Xa21. Science 270:661–667. doi:10.1126/science.270.5243.1804 CrossRefGoogle Scholar
  8. 8.
    Kachroo A, Nasrallah ME, Nasrallah JB (2002) Self-incompatibility in the Brassicaceae: receptor-ligand signaling and cell-to-cell communication. Plant Cell 14(Supplement):227–238Google Scholar
  9. 9.
    Scheer JM, Ryan CA (2002) The systemin receptor SR160 from Lycopersicon peruvianum is a member of the LRR receptor kinase family. Proc Natl Acad Sci USA 99:9585–9590. doi:10.1073/pnas.132266499 CrossRefPubMedGoogle Scholar
  10. 10.
    Zhang LP, Khan A, Nino-Liu D, Foolad MR (2002) A molecular linkage map of tomato displaying chromosomal locations of resistance gene analogs based on a Lycopersicon esculentum × Lycopersicon hirsutum cross. Genome 45:133–146. doi:10.1139/g01-124 CrossRefPubMedGoogle Scholar
  11. 11.
    Wang BL, Liu J, Tian ZD, Song BT, Xie CH (2005) Monitoring the expression patterns of potato genes associated with quantitative resistance to late blight during Phytophthora infestans infection using cDNA microarrays. Plant Sci 169:1155–1167. doi:10.1016/j.plantsci.2005.07.020 CrossRefGoogle Scholar
  12. 12.
    Cruickshank K, Stewant HE, Wastie RL (1982) A illustrated assessment key for foliage blight of potatoes. Potato Res 25:213–214. doi:10.1007/BF02359807 CrossRefGoogle Scholar
  13. 13.
    Tian ZD, Liu J, Xie CH (2003) Isolation of resistance-related genes to P. infestans with suppression subtractive hybridization in the R-gene-free potato. Acta Genetica Sin 30:597–605 in Chinese with an English abstractGoogle Scholar
  14. 14.
    Altschul SF, Madden TL, Schaffer AA, Zhang JH, Zhang Z, Miller W, Lipman DJ (1997) Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res 25:3389–3402. doi:10.1093/nar/25.17.3389 CrossRefPubMedGoogle Scholar
  15. 15.
    Schultz J, Milpetz F, Bork P, Ponting CP (1998) SMART, a simple modular architecture research tool: identification of signaling domains. Proc Natl Acad Sci USA 95:5857–5864. doi:10.1073/pnas.95.11.5857 CrossRefPubMedGoogle Scholar
  16. 16.
    Gribskov M, Fana F, Harper J, Hope DA, Harmon AC, Smith DW, Tax FE, Zhang GF (2001) PlantsP: a functional genomics database for plant phosphorylation. Nucleic Acids Res 29:111–113. doi:10.1093/nar/29.1.111 CrossRefPubMedGoogle Scholar
  17. 17.
    Gasteiger E, Gattiker A, Hoogland C, Ivanyi I, Appel RD, Bairoch A (2003) ExPASy: the proteomics server for in-depth protein knowledge and analysis. Nucleic Acids Res 31:3784–3788. doi:10.1093/nar/gkg563 CrossRefPubMedGoogle Scholar
  18. 18.
    Tamura K, Dudley J, Nei M, Kumar S (2007) MEGA4: molecular evolutionary genetics analysis. Mol Biol Evol 24:1596–1599. doi:10.1093/molbev/msm092 CrossRefPubMedGoogle Scholar
  19. 19.
    Bendtsen JD, Nielsen H, Heijne GV, Brunak S (2004) Improved prediction of signal peptides: signalP 3.0. J Mol Biol 340:783–795. doi:10.1016/j.jmb.2004.05.028 CrossRefPubMedGoogle Scholar
  20. 20.
    Nakai K, Horton P (1999) PSORT: a program for detecting sorting signals in proteins and predicting their subcellular localization. Trends Biochem Sci 24:34–36. doi:10.1016/S0968-0004(98)01336-X CrossRefPubMedGoogle Scholar
  21. 21.
    Taylor MA, Wright F, Davies HV (1994) Characterization of the cDNA clones of two beta-tubulin genes and their expression in the potato plant (Solanum tuberosum L.). Plant Mol Biol 26:1013–1018. doi:10.1007/BF00028869 CrossRefPubMedGoogle Scholar
  22. 22.
    Sharma SK, Millam S, Hein I, Bryan GJ (2008) Cloning and molecular characterization of a potato SERK gene transcriptionally induced during initiation of somatic embryogenesis. Planta 228:319–330. doi:10.1007/s00425-008-0739-8 CrossRefPubMedGoogle Scholar
  23. 23.
    Hu H, Xiong L, Yang Y (2005) Rice SERK1 gene positively regulates somatic embryogenesis of cultured cell and host defense response against fungal infection. Planta 222:107–117. doi:10.1007/s00425-005-1534-4 CrossRefPubMedGoogle Scholar
  24. 24.
    Baudino S, Hansen S, Brettschneider R, Hecht VFG, Dresselhaus T, Lörz H, Dumas C, Rogowsky PM (2001) Molecular characterisation of two novel maize LRR receptor-like kinase, which belong to the SERK gene family. Planta 213:1–10. doi:10.1007/s004250000471 CrossRefPubMedGoogle Scholar
  25. 25.
    Song DH, Li GJ, Song FM, Zheng Z (2008) Molecular characterization and expression analysis of OsBISERK1, a gene encoding a leucine-rich repeat receptor-like kinase, during disease resistance responses in rice. Mol Biol Rep 35:275–283. doi:10.1007/s11033-007-9080-8 CrossRefPubMedGoogle Scholar
  26. 26.
    Battaglia M, Solórzano RM, Hernández M, Cuéllar-Ortiz S, García-Gómez B, Márquez J, Covarrubias AA (2007) Proline-rich cell wall proteins accumulate in growing regions and phloem tissue in response to water deficit in common bean seedlings. Planta 225:1121–1133. doi:10.1007/s00425-006-0423-9 CrossRefPubMedGoogle Scholar
  27. 27.
    Godiard L, Sauviac L, Torii KU, Grenon O, Mangin B, Grimsley NH, Marco Y (2003) ERECTA, an LRR receptor-like kinase protein controlling development pleiotropically affects resistance to bacterial wilt. Plant J 36:353–365. doi:10.1046/j.1365-313X.2003.01877.x CrossRefPubMedGoogle Scholar
  28. 28.
    Dempsey DA, Shah J, Klessig DF (1999) Salicylic acid and disease resistance in plants. Crit Rev Plant Sci 18:547–575. doi:10.1080/07352689991309397 CrossRefGoogle Scholar
  29. 29.
    Turner JG, Ellis C, Devoto A (2002) The jasmonate signal pathway. Plant Cell 14(Supplement):153–164Google Scholar
  30. 30.
    Lu YJ, Wang X, Lou YG, Cheng JA (2006) Role of ethylene signaling in the production of rice volatiles induced by the rice brown planthopper Nilaparvata lugens. Chin Sci Bull 51:2457–2465. doi:10.1007/s11434-006-2148-3 CrossRefGoogle Scholar
  31. 31.
    Birkenmeier GF, Ryan CA (1998) Wound signaling in tomato plants-evidence that ABA is not a primary signal for defense gene activation. Plant Physiol 117:687–693. doi:10.1104/pp.117.2.687 CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2009

Authors and Affiliations

  1. 1.Key Laboratory of Horticulture Plant Biology, College of Horticulture and ForestryHuazhong Agricultural UniversityWuhanPeople’s Republic of China

Personalised recommendations