Molecular Biology Reports

, Volume 36, Issue 7, pp 1929–1935 | Cite as

Genetic divergence and phylogenetic analysis of genus Jatropha based on nuclear ribosomal DNA ITS sequence

  • D. V. N. Sudheer Pamidimarri
  • Balaji Chattopadhyay
  • Muppala P. Reddy


The genus Jatropha belongs to the family Euphorbiaceae having significant economic importance. The present investigation was undertaken with an aim to understand phylogenetic relationships among seven species (J. curcas, J. glandulifera, J. gossypifolia, J. integerrima, J. multifida, J. podagrica, and J. tanjorensis.) which are widely distributed in India, using nuclear ribosomal DNA ITS sequence (nrDNA ITS) and to compare the results with multilocus marker analysis systems reported earlier for the same genus. The size variation obtained among sequenced nrDNA ITS regions was narrow and ranged from 647 to 654 bp. The overall mean genetic distance (GD) of genus Jatropha was found to be 0.385. Highest interspecific GD (0.419) was found between J. glandulifera and J. multifida. The least interspecific GD (0.085) was found between J. gossypifolia and J. tanjorensis. The highest intraspecific GD was observed in J. podagrica (0.011) and least in J. gossypifolia (0.002). The phylogram obtained using nrDNA ITS sequence showed congruence with the phylograms obtained using multilocus markers system reported earlier with minor variations. The present study also strongly supports high phylogentic closeness of J. curcas and J. integerrima. The only exception found was J. podagrica which clustered with J. multifida in earlier based on multilocus marker analysis, was clustered with J. curcas in the present analysis. The sequence data generated in the present investigation will help for further studies in intraspecies population, and their phylogentic analysis, biogeographical, molecular evolution studies and also pave way for future phylogetic and/or evolution studies among the other groups belongs to the family Euphorbiaceae.


Genetic divergence Phylogeny Jatropha and nrDNA ITS region 


  1. 1.
    Fairless D (2007) Biofuel: the little shrub that could—maybe. Nature 449:652–655. doi:10.1038/449652a PubMedCrossRefGoogle Scholar
  2. 2.
    Sudheer PDVN, Nirali P, Reddy MP, Radhakrishnan T (2008) Comparative study of interspecific genetic divergence and phylogenic analysis of genus Jatropha by RAPD and AFLP. Mol Biol Rep . doi:10.1007/s11033-008-9261-0 Google Scholar
  3. 3.
    Hwang UW, Kim W, Tautz D, Friedrich M (1998) Molecular phylogentics at the Felsenstein zone: approaching the strepsiptera problem using 5.8S and 28S rDNA sequences. Mol Phyl Evol 9:470–480. doi:10.1006/mpev.1998.0518 CrossRefGoogle Scholar
  4. 4.
    Baldwin BG (1992) Phylogenetic utility of the internal transcribed spacers of nuclear ribosomal DNA in plants: an example from the compositae. Mol Phyl Evol 1:3–16. doi:10.1016/1055-7903(92)90030-K CrossRefGoogle Scholar
  5. 5.
    Baldwin BG, Sanderson MJ, Porter JM, Wojciechowski MF, Campbell CS, Donoghue MJ (1995) The ITS region of nuclear ribosomal DNA: a valuable source of evidence on angiosperm phylogeny. Ann Mo Bot Gard 82:247–277. doi:10.2307/2399880 CrossRefGoogle Scholar
  6. 6.
    Wen-Hsiung LI (1997) Molecular evolution. University of Texas, Sinauer Associates, Inc, SunderlandGoogle Scholar
  7. 7.
    Morgen JAT, Blair D (1995) Nuclear rDNA ITS sequence variation in the trematode genus Echinostoma: an aid to establishing relationships within the 37-collar-spine group. Parasitology 111:609–615CrossRefGoogle Scholar
  8. 8.
    Morgen JAT, Blair D (1998) Relative merits of nuclear ribosomal internal transcribed spacers and mitochondrial CO1 and ND1 genes for distinguishing among Echinostoma species. Parasitology 116:289–297. doi:10.1017/S0031182097002217 CrossRefGoogle Scholar
  9. 9.
    Navajas M, Lagnel J, Gutierrez J, Boursot P (1998) Species-wide homogeneity of nuclear ribosomal ITS2 sequences in the spider mite Tetranychus urticae contrasts with extensive mitochondrial COI polymorphism. Heredity 80:742–752. doi:10.1046/j.1365-2540.1998.00349.x PubMedCrossRefGoogle Scholar
  10. 10.
    Perera OP, Cockburn AF, Mitchell SE, Conn J, Seawright JA (1998) Species-specific repeat units in the intergenic spacer of the ribosomal RNA cistron of Anopheles aquasalis curry. Am J Med Hyg 59:673–678Google Scholar
  11. 11.
    Felsenstein J (1985) Confidence limits on phylogenies: an approach using the bootstrap. Evolution 39:783–791. doi:10.2307/2408678 CrossRefGoogle Scholar
  12. 12.
    Tamura KSK, Nei M (1993) MEGA: molecular evolutionary genetics analysis. Version 4.01. Pennsylvania State University, University ParkGoogle Scholar
  13. 13.
    Berry PE, Hipp AL, Wurdack KJ, Ee BV, Riina R (2005) Moldecular phylogenetics of the giant genus croton and tirbe Cortoneae (Euphorbiaceae sensu sticto) using and trnL-trnF sequence data. Am J Bot 92(9):1520–1534. doi:10.3732/ajb.92.9.1520 CrossRefGoogle Scholar
  14. 14.
    Hershkovitz MA, Lewis LA (1996) Deep-level diagnostic value of the rDNA-ITS region. Mol Biol Evol 13:1276–1295PubMedGoogle Scholar
  15. 15.
    Wen J, Zimmer EA (1996) Phylogeny and biogeography of Panax L. (Ginseng genus, Araliaceae): inferences from ITS sequences of nuclear ribosomal DNA. Mol Phyl Evol 6:167–177CrossRefGoogle Scholar
  16. 16.
    Alice LA, Campbell CH (1999) Phylogeny of Rubus (Rosaceae) based on nuclear ribosomal DNA internal transcribed spacer region sequences. Am J Bot 86:81–97. doi:10.2307/2656957 CrossRefGoogle Scholar
  17. 17.
    Sang T, Crawford DJ, Stuessy TF (1995) ITS sequences and the phylogeny of the genus Robinsonia (Asteraceae). Syst Bot 20:55–64. doi:10.2307/2419632 CrossRefGoogle Scholar
  18. 18.
    Sujatha M, Makkar HPS, Becker K (2005) Shoot bud proliferation from axillary nodes and leaf sections of non-toxic Jatropha curcas L.. Plant Growth Regul 47:83–90. doi:10.1007/s10725-005-0859-0 CrossRefGoogle Scholar
  19. 19.
    Rupert EA, Dehgan B, Webster GL (1970) Experimental studies of relationships in the genus Jatropha. I. J. curcas X J. integerrima. Bull Torrey Bot Club 99:321–325. doi:10.2307/2483852 CrossRefGoogle Scholar
  20. 20.
    Li W, Graur D (1991) Fundamentals of molecular evolution. Sinauer Associates, SunderlandGoogle Scholar
  21. 21.
    Quicke DLJ (1993) Principle and techniques of contemporary taxonomy. Chapman & Hall, GlasgowGoogle Scholar
  22. 22.
    Yang Z, Yoder AD (1999) Estimation of the transition/transversion rate bias and species sampling. J Mol Evol 48:274–283. doi:10.1007/PL00006470 PubMedCrossRefGoogle Scholar
  23. 23.
    Prabakaran AJ, Sujatha M (1999) Jatropha tanjorensis Ellis & Saroja, a natural interspecific hybrid occurring in Tamil Nadu, India. Genet Resour Crop Evol 46:213–218. doi:10.1023/A:1008635821757 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2008

Authors and Affiliations

  • D. V. N. Sudheer Pamidimarri
    • 1
  • Balaji Chattopadhyay
    • 2
  • Muppala P. Reddy
    • 1
  1. 1.Discipline of Wasteland ResearchCentral Salt and Marine Chemicals Research Institute (CSIR)BhavnagarIndia
  2. 2.Department of Animal Behaviour and Physiology, School of Biological ScienceMadurai Kamaraj UniversityMaduraiIndia

Personalised recommendations