Molecular Biology Reports

, 36:1741 | Cite as

Response of cementoblast-like cells to mechanical tensile or compressive stress at physiological levels in vitro

  • Lan Huang
  • Yao Meng
  • Aishu Ren
  • Xianglong Han
  • Ding Bai
  • Lina Bao
Article

Abstract

To clarify the role of cementoblast in orthodontic-related root resorption, this study was attempted to examine whether murine cementoblast-like cells are responsive to mechanical stress, and how mechanical forces regulate bone sialoprotein (BSP) and osteopontin (OPN) gene expression in these cells in vitro. In this force-loading model, defined and reproducible mechanical loadings of different magnitudes and types were applied up to 24 h. Besides a transitory and reversible change in cell proliferation, remarkable alterations in gene transcription of BSP and OPN were found. BSP mRNA was suppressed by the stresses. Three and six hours-loadings at 2,000 μstrain up-regulated the expression of OPN mRNA, while the other loadings inhibited it. The study also concluded that 4,000 μstrain was likely to exert more influence on cementoblast-like cells than 2,000 μstrain. Furthermore, no obvious evidence indicated the difference between tension and compression. These results suggested that cementoblast-like cells are sensitive to mechanical stress, and may play a role in regulating orthodontic-related root resorption/repair.

Keywords

Cementoblast Mechanical stress Proliferation mRNA Bone sialoprotein Osteopontin 

References

  1. 1.
    Pitaru S, Pritzki A, Bar-Kana I et al (2002) Bone morphogenetic protein 2 induces the expression of cementum attachment protein in human periodontal ligament clones. Connect Tissue Res 43:257–264. doi:10.1080/713713494 PubMedCrossRefGoogle Scholar
  2. 2.
    Brezniak N, Wasserstein A (2002) Orthodontically induced inflammatory root resorption. Part I: the basic science aspects. Angle Orthod 72:175–179PubMedGoogle Scholar
  3. 3.
    Chan E, Darendeliler MA (2006) Physical properties of root cementum: part 7. Extent of root resorption under areas of compression and tension. Am J Orthod Dentofacial Orthop 129:504–510. doi:10.1016/j.ajodo.2004.12.018 PubMedCrossRefGoogle Scholar
  4. 4.
    Jimenez-Pellegrin C, Arana-Chavez VE (2007) Root resorption repair in mandibular first premolars after rotation a transmission electron microscopy analysis combined with immunolabeling of osteopontin. Am J Orthod Dentofacial Orthop 132:230–236. doi:10.1016/j.ajodo.2007.03.017 PubMedCrossRefGoogle Scholar
  5. 5.
    Casa MA, Faltin RM, Faltin K et al (2006) Root resorption on torqued human premolars shown by tartrate-resistant acid phosphatase histochemistry and transmission electron microscopy. Angle Orthod 76:1015–1021. doi:10.2319/071505-233 PubMedCrossRefGoogle Scholar
  6. 6.
    Faltin RM, Faltin K, Sander FG et al (2001) Ultrastructure of cementum and periodontal ligament after continuous intrusion in humans: a transmission electron microscopy study. Eur J Orthod 23:35–49. doi:10.1093/ejo/23.1.35 PubMedCrossRefGoogle Scholar
  7. 7.
    Brezniak N, Wasserstein A (2002) Orthodontically induced inflammatory root resorption. Part II: the clinical aspects. Angle Orthod 72:180–184PubMedGoogle Scholar
  8. 8.
    Sismanidou C, Hilliges M, Lindskog S (1996) Healing of the root surface-associated periodontium: an immunohistochemical study of orthodontic root resorption in man. Eur J Orthod 18:435–444. doi:10.1093/ejo/18.1.435 PubMedCrossRefGoogle Scholar
  9. 9.
    Pavlin D, Gluhak-Heinrich J (2001) Effect of mechanical loading on periodontal cells. Crit Rev Oral Biol Med 12:414–424PubMedCrossRefGoogle Scholar
  10. 10.
    Mitsui N, Suzuki N, Maeno M et al (2005) Optimal compressive force induces bone formation via increasing bone sialoprotein and prostaglandin E(2) production appropriately. Life Sci 77:3168–3182. doi:10.1016/j.lfs.2005.03.037 PubMedCrossRefGoogle Scholar
  11. 11.
    Carvalho RS, Bumann A, Schaffer JL et al (2002) Predominant integrin ligands expressed by osteoblasts show preferential regulation in response to both cell adhesion and mechanical perturbation. J Cell Biochem 84:497–508. doi:10.1002/jcb.10031 PubMedCrossRefGoogle Scholar
  12. 12.
    Domon S, Shimokawa H, Yamaguchi S et al (2001) Temporal and spatial mRNA expression of bone sialoprotein and type I collagen during rodent tooth movement. Eur J Orthod 23:339–348. doi:10.1093/ejo/23.4.339 PubMedCrossRefGoogle Scholar
  13. 13.
    Carvalho RS, Schaffer JL, Gerstenfeld LC (1998) Osteoblasts induce osteopontin expression in response to attachment on fibronectin: demonstration of a common role for integrin receptors in the signal transduction processes of cell attachment and mechanical stimulation. J Cell Biochem 70:376–390. doi:10.1002/(SICI)1097-4644(19980901)70:3<376::AID-JCB11>3.0.CO;2-JPubMedCrossRefGoogle Scholar
  14. 14.
    Liu J, Liu T, Zheng Y et al (2006) Early responses of osteoblast-like cells to different mechanical signals through various signaling pathways. Biochem Biophys Res Commun 348:1167–1173. doi:10.1016/j.bbrc.2006.07.175 PubMedCrossRefGoogle Scholar
  15. 15.
    Li J, Chen G, Zheng L et al (2007) Osteoblast cytoskeletal modulation in response to compressive stress at physiological levels. Mol Cell Biochem 304:45–52. doi:10.1007/s11010-007-9484-8 PubMedCrossRefGoogle Scholar
  16. 16.
    Yu H, Ren Y, Sandham A et al (2009) Mechanical tensile stress effects on the expression of bone sialoprotein in bovine cementoblasts. Angle Orthod 79(2):346–352. doi:10.2319/011508-20.1 PubMedCrossRefGoogle Scholar
  17. 17.
    Chun YH, Foster BL, Lukasavage PA et al (2005) Bisphosphonate modulates cementoblast behavior in vitro. J Periodontol 76:1890–1900. doi:10.1902/jop.2005.76.11.1890 PubMedCrossRefGoogle Scholar
  18. 18.
    Viswanathan HL, Berry JE, Foster BL et al (2003) Amelogenin: a potential regulator of cementum-associated genes. J Periodontol 74:1423–1431. doi:10.1902/jop.2003.74.10.1423 PubMedCrossRefGoogle Scholar
  19. 19.
    Hakki SS, Nohutcu RM, Hakki EE et al (2005) Dexamethasone and basic-fibroblast growth factor regulate markers of mineralization in cementoblasts in vitro. J Periodontol 76:1550–1558. doi:10.1902/jop.2005.76.9.1550 PubMedCrossRefGoogle Scholar
  20. 20.
    D’Errico JA, Berry JE, Ouyang H et al (2000) Employing a transgenic animal model to obtain cementoblasts in vitro. J Periodontol 71:63–72. doi:10.1902/jop.2000.71.1.63 PubMedCrossRefGoogle Scholar
  21. 21.
    Boabaid F, Berry JE, Koh AJ et al (2004) The role of parathyroid hormone-related protein in the regulation of osteoclastogenesis by cementoblasts. J Periodontol 75:1247–1254. doi:10.1902/jop.2004.75.9.1247 PubMedCrossRefGoogle Scholar
  22. 22.
    Lee A, Schneider G, Finkelstein M et al (2004) Root resorption: the possible role of extracellular matrix proteins. Am J Orthod Dentofacial Orthop 126:173–177. doi:10.1016/j.ajodo.2004.02.009 PubMedCrossRefGoogle Scholar
  23. 23.
    D’Errico JA, MacNeil RL, Takata T et al (1997) Expression of bone associated markers by tooth root lining cells, in situ and in vitro. Bone 20:117–126. doi:10.1016/S8756-3282(96)00348-1 PubMedCrossRefGoogle Scholar
  24. 24.
    Pizzo G, Licata ME, Guiglia R et al (2007) Root resorption and orthodontic treatment Review of the literature. Minerva Stomatol 56:31–44PubMedGoogle Scholar
  25. 25.
    Shimizu E, Matsuda-Honjyo Y, Samoto H et al (2004) Static magnetic fields-induced bone sialoprotein (BSP) expression is mediated through FGF2 response element and pituitary-specific transcription factor-1 motif. J Cell Biochem 91:1183–1196. doi:10.1002/jcb.20002 PubMedCrossRefGoogle Scholar
  26. 26.
    Nakajima Y, Kato N, Nakayama Y et al (2006) Effect of chlorpromazine on bone sialoprotein (BSP) gene transcription. J Cell Biochem 97:1198–1206. doi:10.1002/jcb.20706 PubMedCrossRefGoogle Scholar
  27. 27.
    Ogata Y (2008) Bone sialoprotein and its transcriptional regulatory mechanism. J Periodontal Res 43:127–135. doi:10.1111/j.1600-0765.2007.01014.x PubMedCrossRefGoogle Scholar
  28. 28.
    D’Errico JA, Ouyang H, Berry JE et al (1999) Immortalized cementoblasts and periodontal ligament cells in culture. Bone 25:39–47. doi:10.1016/S8756-3282(99)00096-4 PubMedCrossRefGoogle Scholar
  29. 29.
    Bosshardt DD (2005) Are cementoblasts a subpopulation of osteoblasts or a unique phenotype? J Dent Res 84:390–406PubMedCrossRefGoogle Scholar
  30. 30.
    VandenBos T, Bronckers AL, Goldberg HA et al (1999) Blood circulation as source for osteopontin in acellular extrinsic fiber cementum and other mineralizing tissues. J Dent Res 78:1688–1695PubMedCrossRefGoogle Scholar
  31. 31.
    Ross FP, Chappel J, Alvarez JI et al (1993) Interactions between the bone matrix proteins osteopontin and bone sialoprotein and the osteoclast integrin alpha v beta 3 potentiate bone resorption. J Biol Chem 268:9901–9907PubMedGoogle Scholar
  32. 32.
    Toma CD, Ashkar S, Gray ML et al (1997) Signal transduction of mechanical stimuli is dependent on microfilament integrity: identification of osteopontin as a mechanically induced gene in osteoblasts. J Bone Miner Res 12:1626–1636. doi:10.1359/jbmr.1997.12.10.1626 PubMedCrossRefGoogle Scholar
  33. 33.
    Harter LV, Hruska KA, Duncan RL (1995) Human osteoblast-like cells respond to mechanical strain with increased bone matrix protein production independent of hormonal regulation. Endocrinology 136:528–535. doi:10.1210/en.136.2.528 PubMedCrossRefGoogle Scholar
  34. 34.
    Shigeyama Y, Grove TK, Strayhorn C et al (1996) Expression of adhesion molecules during tooth resorption in feline teeth: a model system for aggressive osteoclastic activity. J Dent Res 75:1650–1657PubMedCrossRefGoogle Scholar
  35. 35.
    Chung CJ, Soma K, Rittling SR et al (2008) OPN deficiency suppresses appearance of odontoclastic cells and resorption of the tooth root induced by experimental force application. J Cell Physiol 214:614–620. doi:10.1002/jcp.21250 PubMedCrossRefGoogle Scholar
  36. 36.
    Fermor B, Gundle R, Evans M et al (1998) Primary human osteoblast proliferation and prostaglandin E2 release in response to mechanical strain in vitro. Bone 22:637–643. doi:10.1016/S8756-3282(98)00047-7 PubMedCrossRefGoogle Scholar
  37. 37.
    Ryph P (1977) Orthodontic root resorption studied by electron microscopy. Angle Orthod 47:1–16Google Scholar
  38. 38.
    Williams S (1984) A histomorphometric study of orthodontically induced root resorption. Eur J Orthod 6:35–47PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2008

Authors and Affiliations

  • Lan Huang
    • 1
    • 2
  • Yao Meng
    • 1
    • 2
  • Aishu Ren
    • 3
  • Xianglong Han
    • 1
    • 2
  • Ding Bai
    • 1
    • 2
  • Lina Bao
    • 4
  1. 1.State Key Laboratory of Oral DiseaseSichuan UniversityChengduPeople’s Republic of China
  2. 2.Department of Orthodontics, West China Stomatology HospitalSichuan UniversityChengduPeople’s Republic of China
  3. 3.Department of Orthodontics, Chongqing Stomatology HospitalChongqing Medical UniversityChongqingPeople’s Republic of China
  4. 4.Department of OrthodonticsGuangdong Provincial Stomatological HospitalGuangzhouPeople’s Republic of China

Personalised recommendations