The complete mitochondrial genome structure of snow leopard Panthera uncia

  • Lei Wei
  • Xiaobing WuEmail author
  • Zhigang Jiang


The complete mitochondrial genome (mtDNA) of snow leopard Panthera uncia was obtained by using the polymerase chain reaction (PCR) technique based on the PCR fragments of 30 primers we designed. The entire mtDNA sequence was 16 773 base pairs (bp) in length, and the base composition was: A—5,357 bp (31.9%); C—4,444 bp (26.5%); G—2,428 bp (14.5%); T—4,544 bp (27.1%). The structural characteristics [0] of the P. uncia mitochondrial genome were highly similar to these of Felis catus, Acinonyx jubatus, Neofelis nebulosa and other mammals. However, we found several distinctive features of the mitochondrial genome of Panthera unica. First, the termination codon of COIII was TAA, which differed from those of F. catus, A. jubatus and N. nebulosa. Second, tRNASer (AGY), which lacked the ‘‘DHU’’ arm, could not be folded into the typical cloverleaf-shaped structure. Third, in the control region, a long repetitive sequence in RS-2 (32 bp) region was found with 2 repeats while one short repetitive segment (9 bp) was found with 15 repeats in the RS-3 region. We performed phylogenetic analysis based on a 3 816 bp concatenated sequence of 12S rRNA, 16S rRNA, ND2, ND4, ND5, Cyt b and ATP8 for P. uncia and other related species, the result indicated that P. uncia and P. leo were the sister species, which was different from the previous findings.


Pantherauncia Complete mitochondrial genome Phylogenetic analyses 



This work was supported by grants from Knowledge Innovation Project of Chinese Academy of Sciences (No. CXTDS2005–4), National Natural Science Foundation of China (NSFC, No.30470244), Research Fund for the Doctoral Program of Higher Education (20070370002), the Fund for Leading Scientist of Science and Technology in Anhui and Key Laboratory of Biotic Environment and Ecological Safety in Anhui Province, China.


  1. 1.
    Boore JL (1999) Animal mitochondrial genomes. Nucleic Acids Res 27(8):1767–1780PubMedCrossRefGoogle Scholar
  2. 2.
    O’Brien SJ (1994) Genetic and phylogenetic analyses of endangered species. Annu Rev Genet 28:467–489PubMedCrossRefGoogle Scholar
  3. 3.
    D’Erchia AM, Gissi C, Pesole G, Saccone C, Arnason U (1996) The guinea-pig is not a rodent. Nature 381:597–600PubMedCrossRefGoogle Scholar
  4. 4.
    Penny D, Hasegawa M (1997) The platypus put in its place. Nature 387:549–550PubMedCrossRefGoogle Scholar
  5. 5.
    Anderson S, Bankier AT, Barrell BG, de Bruijn MH, Coulson AR, Drouin J, Nierlich DP, Roe BA, Sanger FH, Smith J, Staden R, Young IG (1981) Sequence and organization of the human mitochondrial genome. Nature (London) 290:457–465CrossRefGoogle Scholar
  6. 6.
    Kim KS, Seong EL, Ho WJ, Ji HH (1998) The complete nucleotide sequence of the domestic dog (Canis familiariz) mitochondrial genome. Mol Phylogenet Evol 10:210–220PubMedCrossRefGoogle Scholar
  7. 7.
    Janczewski DN, Modi WS, Stephens JC, O’Brien SJ (1995) Molecular evolution of mitochondrial 12S RNA and cytochrome b sequencse in the Pantherine lineage of Felidae. Mol Biol Evol 12:690–707PubMedGoogle Scholar
  8. 8.
    Vila C, Savolainen P, Maldonado JE, Amorim IR, Rice JE, Honeycutt RL, Crandall KA, Lundeberg J, Wayne RK (1997) Multiple and ancient origins of the domestic dog. Science 276:1687–1689PubMedCrossRefGoogle Scholar
  9. 9.
    Arnason U, Johnsson E (1992) The complete mitochondrial DNA sequence of the harbor seal, Phoca vitulina. J Mol Evol 34:493–505PubMedCrossRefGoogle Scholar
  10. 10.
    Cao Y, Adachi J, Janke A, Paabo S, Hasegawa M (1994) Phylogenetic relationships among eutherian orders estimated from inferred sequences of mitochondrial proteins: instability of tree based on a single gene. J Mol Evol 39:519–527PubMedCrossRefGoogle Scholar
  11. 11.
    Xu X, Arnason U (1996) The mitochondrial DNA molecule of Sumatran orangutan and a molecular proposal for two (Bornean and Sumatran) species of orangutan. J Mol Evol 43:431–437PubMedCrossRefGoogle Scholar
  12. 12.
    Boore JL, Macey JR, Medina M (2005) Sequencing and comparing whole mitochondrial genomes of animals. Methods Enzymol 395:311–348PubMedCrossRefGoogle Scholar
  13. 13.
    Masuda R, Lopez JV, Pecon Slattery J, Yuhki N, O’Brien SJ (1996) Molecular phylogeny of mitochondrial cytochrome b and 12S rRNA sequences in the Felidae: ocelot and domestic cat lineages. Mol Phylogenet Evol 3:351–365CrossRefGoogle Scholar
  14. 14.
    Pecon SJ, Johnson WE, Goldman D, O’Brien SJ (1994) Phylogenetic reconstruction of South American felids defined by protein electrophoresis. J Mol Evol 39:296–305CrossRefGoogle Scholar
  15. 15.
    Johnson WE, O’Brien SJ (1997) Phylogenetic reconstruction of the felidae using 16SrRNA and NADH-5 mitochondrial genes. Mol Evol 44(1):98–116CrossRefGoogle Scholar
  16. 16.
    Li Y, Zhang YP (2005) Phylogenetic studies of pantherine cats (Felidae) based on multiple genes, with novel application of nuclear β-fibrinogen intron 7 to carniores. Mol Phyl Evol 35:483–495CrossRefGoogle Scholar
  17. 17.
    Johnson WE, Eizirik E, Slatter JP, Murphy WJ, Antunes A, Teeling E, O’Brien SJ (2006) The late miocene radiation of modern Felidae: a genetic assessment. Science 311:73–77PubMedCrossRefGoogle Scholar
  18. 18.
    Lopez JV, Cevario S, O’Brien SJ (1996) Complete nucleotide sequences of the Domestic cat (Felis catus) mitochondrial genome and a transposed mtDNA tandem repeat (Numt) in the nuclear genome. Genomics 33:229–246PubMedCrossRefGoogle Scholar
  19. 19.
    Burger PA, Steinborn R, Walzer C, Petit T, Mueller M, Schwarzenberger F (2004) Analysis of the mitochondrial genome of cheetahs (Acinonyx jubatus) with neurodegenerative disease. Gene 338:111–119PubMedCrossRefGoogle Scholar
  20. 20.
    Wu XB, Zheng T, Jiang ZG, Wei L (2007) The mitochondrial genome structure of the clouded leopard (Neofelis nebulosa). Genome 50(2):252–257PubMedCrossRefGoogle Scholar
  21. 21.
    Rychlik W, Rychlik P (2000) Oligo Primer Analysis Software. Version6.01. Molecular Biology Insights, Inc., Cascade, ColoradoGoogle Scholar
  22. 22.
    Altschul SF, Madden TL, Schäer AA, Zhang J, Zhang Z, Miller W, Lipman DJ (1997) Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res 25:3389–3402PubMedCrossRefGoogle Scholar
  23. 23.
    Thompson JD, Gibson TJ, Plewniak F, Jeanmougin F, Higgins DG (1997) The clustal_X windows interface: xexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res 25(24):4876–4882PubMedCrossRefGoogle Scholar
  24. 24.
    Swofford DL (2003) PAUP*: Phylogenetic Analysis Using Parsimony (*and Other Methods). Version 4.0b10. Sinauer Associates, Sunderland, Massachusetts.Google Scholar
  25. 25.
    Posada D, Crandall KA (1998) MODELTEST: testing the model of DNA substitution. Bioinformatics 14:817–818PubMedCrossRefGoogle Scholar
  26. 26.
    Posada D, Buckley TR (2004) Model selection and model averaging in phylogenetics: advantages of the AIC and Bayesian approaches over likelihood ratio tests. Syst Biol 53:793–808PubMedCrossRefGoogle Scholar
  27. 27.
    Huelsenbeck JP, Ronquist F (2001) MRBAYES: Bayesian inference of phylogenetic trees. Bioinformatics 17(8):754–755PubMedCrossRefGoogle Scholar
  28. 28.
    Rannala B, Yang Z (1996) Probability distribution of molecular evolution trees: a new method of phylogenetic inference. J Mol Evol 43:304–311PubMedCrossRefGoogle Scholar
  29. 29.
    Leaché AD, Reeder TW (2002) Molecular systematics of the eastern fence lizard (Sceloporus undulatus): a comparison of parsimony, likelihood, and Bayesian approaches. Syst Biol 51:44–68PubMedCrossRefGoogle Scholar
  30. 30.
    Felsenstein J (1985) Confidence limits on phylogenies: an approach using the bootstrap. Evolution 39:783–791CrossRefGoogle Scholar
  31. 31.
    Hedges SB (1992) The number of replications needed for accurate estimation of the bootstrap P value in phylogenetic studies. Mol Biol Evol 9:366–369PubMedGoogle Scholar
  32. 32.
    Huelsenbeck JP, Hillis DM (1993) Success of phylogenetic methods in the four-taxon case. Syst Biol 42:247–264Google Scholar
  33. 33.
    Ursing BM, Arnason U (1998) The complete mitochondrial DNA sequence of the pig (Sus scrofa). J Mol Evol 47:302–306PubMedCrossRefGoogle Scholar
  34. 34.
    Gissi C, Gullberg A, Arnason U (1998) The Complete mitochondrial DNA sequence of the Rabbit (Oryctolagus cuniculus). Genomics 50:161–169PubMedCrossRefGoogle Scholar
  35. 35.
    Xu X, Gullberg A, Arnason U (1996) The complete mitochondrial DNA (mtDNA) of the donkey and mtDNA comparisons among four closely related mammalian species-pairs. J Mol Evol 43(5):438–446PubMedCrossRefGoogle Scholar
  36. 36.
    Ojala D, Monotoya J, Attardi G (1981) tRNA punctuation model of RNA processing in human mitochondria. Nature (London) 290:470–474CrossRefGoogle Scholar
  37. 37.
    Sumida M, Kanamori Y, Kaneda H, Kato Y, Nishioka M, Hasegawa M, Yonekawa H (2001) Complete nucleotide sequence and gene rearrangement of the mitochondrial genome of the Japanese pond frog Rana nigromaculata. Genes Genet Syst 76:311–325PubMedCrossRefGoogle Scholar
  38. 38.
    Sano N, Kurabayashi A, Fujii T, Yonekawa H, Sumida M (2004) Complete nucleotide sequence and gene rearrangement of the mitochondrial genome of the bellring frog, Buergeria buergeri (family Rhacophoridae). Genes Genet Syst 79(3):151–163PubMedCrossRefGoogle Scholar
  39. 39.
    Wu XB, Wang YQ, Zhou KY, Zhu WQ, Nie JS, Wang CL (2003) Complete mitochondrial DNA sequence of Chinese alligator, Alligator sinensis, and phylogeny of crocodiles. Chin Sci Bull 48(19):2050–2054CrossRefGoogle Scholar
  40. 40.
    Janke A, Arnason U (1997) The complete mitochondrial genome of Alligator mississippiensis and the separation between recent archosauria (birds and crocodiles). Mol Biol Evol 14:1266–1272PubMedGoogle Scholar
  41. 41.
    Janke A, Erpenbeck D, Nilsson M, Arnason U (2001) The mitochondrial genomes of the iguana (Iguana iguana) and the caiman (Caiman crocodylus): implications for amniote phylogeny. Proc Biol Sci 268:623–631PubMedCrossRefGoogle Scholar
  42. 42.
    Sun Y, Ma F, Xiao B, Zheng JJ, Yuan XD, Tang MQ, Wang L, Yu YF, Li QW (2004) The complete mitochondrial genomes sequences of Asio flammeus and Asio otus and comparative analysis. Sci China Ser C Life Sci 47(6):510–520CrossRefGoogle Scholar
  43. 43.
    Hu M, Chilton NB, Gasser RB (2003) The mitochondrial genome of Strongyloides stercoralis (Nematoda)—idiosyncratic gene order and evolutionary implications. Int J Parasitol 33:1393–1408PubMedCrossRefGoogle Scholar
  44. 44.
    Frazer-Abel AA, Hagerman PJ (1999) Determination of the angle between the acceptor and anticodon stems of a truncated mitochondrial tRNA. J Mol Biol 85(2):581–593CrossRefGoogle Scholar
  45. 45.
    Jae-Heup K, Eizirik E, O’Brien SJ, Johnson WE (2001) Structure and patterns of sequence variation in the mitochondrial DNA control region of the great cats. Mitochondrion 14:279–292CrossRefGoogle Scholar
  46. 46.
    Freeman AR, Machug DE, McKeown S, Walzer C, McConnell DJ, Bradley DG (2001) Sequence variation in the mitochondrial DNA control region of wild African cheetahs (Acinonyx jubatus). Heredity 86:355–362PubMedCrossRefGoogle Scholar
  47. 47.
    Cracraft J, Feinstein J, Vaughn, Helm-Bychowski K (1998) Sorting out tigers (Panthera tigris): mitochondrial sequences, nuclear inserts, systematics, and conservation genetics. Anim Conserv 1:63–74CrossRefGoogle Scholar
  48. 48.
    Delarbre C, Rasmussen AS, Arnason U, Gachelin G (2001) The complete mitochondrial genome of the hagfish Myxine glutinosa: unique features of the control region. J Mol Evol 53:634–641PubMedCrossRefGoogle Scholar
  49. 49.
    Delport W, Ferguson JW, Bloomer P (2002) Characterization and evolution of the mitochondrial DNA control region in hornbills (Bucerotiformes). J Mol Evol 54:794–806PubMedCrossRefGoogle Scholar
  50. 50.
    Casane D, Dennebouy N, de Rochambeau H, Mounolou JC, Monnerot M (1997) Nonneutral evolution of tandem repeats in the mitochondrial DNA control region of Lagomorphs. J Mol Biol Evol 14:779–789Google Scholar
  51. 51.
    Bininda-Emonds OR, Gittleman JL, Purvis A (1999) Building large trees by combining phylogenetic information: a complete phylogeny of the extant Carnivora (Mammalia). Biol Rev 74:143–175PubMedCrossRefGoogle Scholar
  52. 52.
    Kurten B, Anderson E (1980) Pleistocene mammals of North America. Columbia University Press, New York, pp 108–118Google Scholar
  53. 53.
    Wayne RK, Benveniste RE, Janczewski DN, O'Brien SJ (1989) Molecular and biochemical evolution of the Carnivora. In: Gittleman JL (ed) Carnivore behaviour, ecology and evolution. Chapman and Hall, London, pp 465–494Google Scholar
  54. 54.
    Mattern MY, McLennan DA (2000) Phylogeny and speciation of felids. Cladistics 16:232–253CrossRefGoogle Scholar
  55. 55.
    Bininda-Emonds OR (2001) The utility of chemical signals as phylogenetic characters: an example from the felidae. Biol J Linn Soc 72:1–15CrossRefGoogle Scholar
  56. 56.
    Buckley-Beason VA, Johnson WE, Nash WG, Stanyon R, Menninger JC, Driscoll CA, Howard J, Bush M, Page JE, Roelke ME, Stone G, Martelli PP, Wen C, Ling L, Duraisingam RK, Lam PV, O’Brien SJ (2006) Molecular evidence for species-level distinctions in clouded leopards. Curr Biol 16(23):2371–2376PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2008

Authors and Affiliations

  1. 1.Anhui Provincial Key Lab of the Conservation and Exploitation of Biological Resources, College of Life SciencesAnhui Normal UniversityWuhuChina
  2. 2.Laboratory of Animal Ecology and Conservation Biology, Institute of ZoologyChinese Academy of SciencesBeijingChina

Personalised recommendations