Advertisement

Molecular Biology Reports

, Volume 36, Issue 3, pp 431–436 | Cite as

Pigmentation in Black-boned sheep (Ovis aries): association with polymorphism of the MC1R gene

  • W. D. Deng
  • W. Shu
  • S. L. Yang
  • X. W. Shi
  • H. M. Mao
Article

Abstract

Variations in vertebrate skin and hair color are due to varied amounts of eumelanin (brown/black) and phaeomelanin (red/yellow) produced by the melanocytes. The melanocortin 1 receptor (MC1R) is a regulator of eumelanin and phaeomelanin production in the melanocytes, and MC1R mutations causing coat color changes are known in many vertebrates. We have sequenced the entire coding region of the MC1R gene in Black-boned, Nanping indigenous and Romney Marsh sheep populations and found two silent mutation sites of A12G and G144C, respectively. PCR-RFLP of G144C showed that frequency of allele G in Black-boned, Nanping indigenous and Romney Marsh sheep was 0.818, 0.894 and 0, respectively. Sheep with GG genotype had significantly higher (P < 0.05) tyrosinase activity than sheep with CC genotype in the all investigated samples. Moreover, there was significant effect of MC1R genotype on coat color, suggesting that MC1R gene could affect coat color but not black traits. There would be merit in further studies using molecular techniques to elucidate the cause of black traits in these Black-boned sheep.

Keywords

Melanocortin 1 receptor (MC1RPigmentation Black-boned sheep 

Notes

Acknowledgements

Financial support for this study provided from the Yunnan Provincial Natural Science Fund (Project Nos. 2004C0039M and 2006C0005Z) and National Nature Science Foundation of China (Project No. 30460089) are acknowledged with gratitude. The authors thank the Editor and two anonymous reviewers for critical reviews on this manuscript. The authors also appreciated the help of staff from the Yunnan Stud Sheep Farm and Nanping County Animal Science and Veterinary Bureau during samples collection.

References

  1. 1.
    D’Orazio JA, Nobuhisa T, Cui R, Arya M, Spry M, Wakamatsu K, Igras V, Kunisada T, Granter SR, Nishimura EK, Ito S, Fisher DE (2006) Topical drug rescue strategy and skin protection based on the role of Mc1r in UV-induced tanning. Nature 443:340–344PubMedCrossRefGoogle Scholar
  2. 2.
    Wickelgren I (2007a) Skin biology. A healthy tan? Science 315:1214–1216PubMedCrossRefGoogle Scholar
  3. 3.
    Wickelgren I (2007b) Skin biology. Why I have red hair, need to avoid the sun, and shouldn’t commit a crime. Science 315:1215PubMedCrossRefGoogle Scholar
  4. 4.
    Lin JY, Fisher DE (2007) Melanocyte biology and skin pigmentation. Nature 445:843–850PubMedCrossRefGoogle Scholar
  5. 5.
    Chhajlani V, Wikberg JES (1992) Molecular cloning and expression of the human melanocyte stimulating hormone receptor cDNA. FEBS Lett 309:417–420PubMedCrossRefGoogle Scholar
  6. 6.
    Mountjoy KG, Robbins LS, Mortrud MT, Cone RD (1992) The cloning of a family of genes that encode the melanocortin receptors. Science 257:1248–1251PubMedCrossRefGoogle Scholar
  7. 7.
    Robbins LS, Nadeau JH, Johnson KR, Kelly MA, Roselli-Rehfuss L, Baack E, Mountjoy KG, Cone RD (1993) Pigmentation phenotypes of variant extension locus alleles result from point mutations that alter MSH receptor function. Cell 72:827–834PubMedCrossRefGoogle Scholar
  8. 8.
    Takeuchi S, Takeuchi T, Yamamoto H (2000) A possible mechanism for feedback regulation of the mouse tyrosinase gene by its 3′ non-coding RNA fragments. Pigment Cell Res 13:109–115PubMedCrossRefGoogle Scholar
  9. 9.
    Han R, Baden HP, Brissette JL, Weiner L (2002) Redefining the skin’s pigmentary system with a novel tyrosinase assay. Pigment Cell Res 15:290–297PubMedCrossRefGoogle Scholar
  10. 10.
    Slominski A, Tobin DJ, Shibahara S, Wortsman J (2004) Melanin pigmentation in mammalian skin and its hormonal regulation. Physiol Rev 84:1155–1228PubMedCrossRefGoogle Scholar
  11. 11.
    Hall AM, Orlow SJ (2005) Degradation of tyrosinase induced by phenylthiourea occurs following Golgi maturation. Pigment Cell Res 18:122–129PubMedCrossRefGoogle Scholar
  12. 12.
    Deng WD, Yang SL, Huo YQ, Gou X, Shi XW, Mao HM (2006) Physiological and genetic characteristics of black-boned sheep (Ovis aries). Anim Genet 37:586–588PubMedCrossRefGoogle Scholar
  13. 13.
    Mao HM, Deng WD, Sun SR, Shu W, Yang SL (2005) Studies on the specific characteristics of Yunnan Black-bone sheep (in Chinese, with English abstract). J Yunnan Agric Univ 20:89–93, F1Google Scholar
  14. 14.
    Sambrook J, Fritsch EF, Maniatis T (1989) Molecular cloning: a laboratory manual, 2nd edn. Cold Spring Harbor Laboratory Press, New York, NYGoogle Scholar
  15. 15.
    Berryere TG, Schmutz SM, Schimpf RJ, Cowan CM, Potter J (2003) TYRP1 is associated with dun coat colour in Dexter cattle or how now brown cow? Anim Genet 34:169–175PubMedCrossRefGoogle Scholar
  16. 16.
    Thompson JD, Higgins DG, Gibson TJ (1994) CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucl Acids Res 22:4673–4680PubMedCrossRefGoogle Scholar
  17. 17.
    Pomerantz SH (1963) Separation, purification, and properties of two tyrosinases from hamster melanoma. J Biol Chem 238:2351–2357PubMedGoogle Scholar
  18. 18.
    Steel RGD, Torrie JH (1980) Principles and procedures of statistics: a biometrical approach, 2nd edn. McGraw-Hill Book Company, New YorkGoogle Scholar
  19. 19.
    Cone RD, Lu D, Koppula S, Vage DI, Klungland H, Boston B, Chen W, Orth DN, Pouton C, Kesterson RA (1996) The melanocortin receptors: agonist, antagonists, and the hormonal control of pigmentation. Recent Prog Horm Res 51:287–318PubMedGoogle Scholar
  20. 20.
    Ito S, Wakamatsu K, Ozeki H (2000) Chemical analysis of melanins and its application to the study of the regulation of melanogenesis. Pigment Cell Res 13(Suppl 8):103–109PubMedCrossRefGoogle Scholar
  21. 21.
    Ito S, Wakamatsu K (2003) Quantitative analysis of eumelanin and pheomelanin in humans, mice, and other animals: a comparative review. Pigment Cell Res 16:523–531PubMedCrossRefGoogle Scholar
  22. 22.
    Wang N, Hebert DN (2006) Tyrosinase maturation through the mammalian secretary pathway: bringing color to life. Pigment Cell Res 19:3–18PubMedCrossRefGoogle Scholar
  23. 23.
    Pomerantz SH, Ances IG (1975) Tyrosinase activity in human skin. Influence of race and age in newborns. J Clin Invest 55:1127–1131PubMedCrossRefGoogle Scholar
  24. 24.
    Iwata M, Corn T, Iwata S, Everett MA, Fuller BB (1990) The relationship between tyrosinase activity and skin color in human foreskins. J Invest Dermatol 95:9–15PubMedCrossRefGoogle Scholar
  25. 25.
    Klungland H, Vage DI (2000) Molecular genetics of pigmentation in domestic animals. Curr Genomics 1:223–242CrossRefGoogle Scholar
  26. 26.
    Vage DI, Klungland H, Lu D, Cone RD (1999) Molecular and pharmacological characterization of dominant black coat color in sheep. Mamm Genome 10:39–43PubMedCrossRefGoogle Scholar
  27. 27.
    Vage DI, Fleet MR, Ponz R, Olsen RT, Monteagudo LV, Tejedor MT, Arruga MV, Gagliardi R, Postiglioni A, Nattrass GS, Klungland H (2003) Mapping and characterization of the dominant black colour locus in sheep. Pigment Cell Res 16:693–697PubMedCrossRefGoogle Scholar
  28. 28.
    Klungland H, Vage DI, Gomez-Raya L, Adalsteinsson S, Lien S (1995) The role of melanocyte-stimulating hormone (MSH) receptor in bovine coat color determination. Mamm Genome 6:636–639PubMedCrossRefGoogle Scholar
  29. 29.
    Sasazaki S, Usui M, Mannen H, Hiura C, Tsuji S (2005) Allele frequencies of the extension locus encoding the melanocortin-1 receptor in Japanese and Korean cattle. Anim Sci J 76:129–132CrossRefGoogle Scholar
  30. 30.
    Sturm RA, Teasdale RD, Box NF (2001) Human pigmentation genes: identification, structure and consequences of polymorphisms variations. Gene 277:49–62PubMedCrossRefGoogle Scholar
  31. 31.
    Duffy DL, Box NF, Chen W, Palmer JS, Montgomery GW, James MR, Hayward NK, Martin NG, Sturm RA (2004) Interactive effects of MC1R and OCA2 on melanoma risk phenotypes. Hum Mol Genet 13:447–461PubMedCrossRefGoogle Scholar
  32. 32.
    Beaumont KA, Newton RA, Smit DJ, Leonard JH, Stow JL, Sturm RA (2005) Altered cell surface expression of human MC1R variant receptor alleles associated with red hair and skin cancer risk. Hum Mol Genet 14:2145–2154PubMedCrossRefGoogle Scholar
  33. 33.
    Branicki W, Brudnik U, Kupiec T, Wolanska-Nowak P, Wojas-Pelc A (2007) Determination of phenotype associated SNPs in the MC1R gene. J Forensic Sci 52:349–354PubMedCrossRefGoogle Scholar
  34. 34.
    Nachman MW, Hoekstra HE, D’Agostino SL (2003) The genetic basis of adaptive melanism in pocket mice. Proc Natl Acad Sci USA 100:5268–5273PubMedCrossRefGoogle Scholar
  35. 35.
    Johansson M, Marklund L, Sandberg K, Andersson L, 1994. Cosegregation between the chestnut coat colour in horses and polymorphisms at the melanocyte stimulating hormone (MSH) receptor locus. Anim Genet 25(suppl 2):35Google Scholar
  36. 36.
    Marklund L, Johansson Moller M, Sandberg K, Andersson L (1996) A missense mutation in the gene for melanocyte stimulating hormone receptor (MC1R) is associated with the chestnut color in horses. Mamm Genome 7:895–899PubMedCrossRefGoogle Scholar
  37. 37.
    Rieder S, Taourit S, Mariat D, Langlois B, Guerin G (2001) Mutations in the agouti (ASIP), the extention (MC1R), and the brown (TYRP) loci and their association to coat color phenotypes in horses (Equus caballus). Mamm Genome 12:450–455PubMedCrossRefGoogle Scholar
  38. 38.
    Vage DI, Lu D, Klungland H, Lien S, Adalsteinsson S, Cone RD (1997) A non-epistatic interaction of agouti and extension in the fox, Vulpes vulpes. Nat Genet 15:311–315PubMedCrossRefGoogle Scholar
  39. 39.
    Eizirik E, Yuhki N, Johnson WE, Menotti-Raymond M, Hannah SS, O’Brien SJ (2003) Molecular genetics and evolution of melanism in the cat family. Curr Biol 13:448–453PubMedCrossRefGoogle Scholar
  40. 40.
    Everts RE, Rothuizen J, van Oost BA (2000) Identification of a premature stop codon in the melanocyte-stimulating hormone receptor gene (MC1R) in Labrador and golden retrievers with yellow coat colour. Anim Genet 31:194–199PubMedCrossRefGoogle Scholar
  41. 41.
    Newton JM, Wilkie AL, He L, Jordan SA, Metallinos DL, Holmes NG, Jackson IJ, Barsh GS (2000) Melanocortin 1 receptor variation in the domestic dog. Mamm Genome 11:24–30PubMedCrossRefGoogle Scholar
  42. 42.
    Kerns JA, Olivier M, Lust G, Barsh GS (2003) Exclusion of melanocortin-1 receptor (Mc1r) and Agouti as candidates for dominant black in dogs. J Hered 94:75–79PubMedGoogle Scholar
  43. 43.
    Kerns JA, Newton J, Berryere TG, Rubin EM, Cheng JF, Schmutz SM, Barsh GS (2004) Characterization of the dog Agouti gene and a non agouti mutation in German Shepherd Dogs. Mamm Genome 15:798–808PubMedCrossRefGoogle Scholar
  44. 44.
    Schmutz SM, Berryere TG, Ellinwood NM, Kerns JA, Barsh GS (2003) MC1R studies in dogs with melanistic mask or brindle patterns. J Hered 94:69–73PubMedCrossRefGoogle Scholar
  45. 45.
    Kijas JMH, Wales R, Tornsten A, Chardon P, Moller M, Andersson L (1998) Melanocortin receptor 1 (MC1R) mutations and coast color in pigs. Genetics 150:1177–1185PubMedGoogle Scholar
  46. 46.
    Kijas JMH, Moller M, Plastow G, Andersson L (2001) A frameshift mutation in MC1R and a high frequency of somatic reversions cause black spotting in pigs. Genetics 158:779–785PubMedGoogle Scholar
  47. 47.
    Takeuchi S, Suzuki H, Yabuuchi M, Takahashi S (1996). A possible involvement of melanocortin 1-receptor in regulating feather color pigmentation in the chicken. Biochim Biophys Acta 1308:164–168PubMedGoogle Scholar
  48. 48.
    Theron E, Hawkins K, Bermingham E, Ricklefs RE, Mundy NI (2001) The molecular basis of an avian plumage polymorphism in the wild: a melanocortin-1-receptor point mutation is perfectly associated with the melanic plumage morph of the bananaquit, Coereba flaveola. Curr Biol 11:550–557PubMedCrossRefGoogle Scholar
  49. 49.
    Mundy NI, Badcock NS, Hart T, Scribner K, Janssen K, Nadeau NJ (2004) Conserved genetic basis of a quantitative plumage trait involved in mate choice. Science 303:1870–1873PubMedCrossRefGoogle Scholar
  50. 50.
    Nadeau NJ, Minvielle F, Mundy NI (2006) Association of a Glu92Lys substitution in MC1R with extended brown in Japanese quail (Coturnix japonica). Anim Genet 37:287–289PubMedCrossRefGoogle Scholar
  51. 51.
    Hoashi T, Watabe H, Muller J, Yamaguchi Y, Vieira WD, Hearing VJ (2005) MART-1 is required for the function of the melanosomal matrix protein PMEL17/GP100 and the maturation of melanosomes. J Biol Chem 280:14006–14016PubMedCrossRefGoogle Scholar
  52. 52.
    Voisey J, Box NF, van Daal A (2001) A polymorphism study of the human Agouti gene and its association with MC1R. Pigment Cell Res 14:264–267PubMedCrossRefGoogle Scholar
  53. 53.
    Bouchard B, Del Marmol V, Jackson IJ, Cherif D, Dubertret L (1994) Molecular characterization of a human tyrosinase-related-protein-2 cDNA Patterns of expression in melanocytic cells. Eur J Biochem 219:127–134PubMedCrossRefGoogle Scholar
  54. 54.
    Sarangarajan R, Zhao Y, Babcock G, Cornelius J, Lamoreux ML, Boissy RE (2000). Mutant alleles at the brown locus encoding tyrosinase-related protein-1 (TRP-1) affect proliferation of mouse melanocytes in culture. Pigment Cell Res 13:337–344PubMedCrossRefGoogle Scholar
  55. 55.
    Manga P, Sato K, Ye L, Beermann F, Lamoreux ML, Orlow SJ (2000) Mutational analysis of the modulation of tyrosinase by tyrosinase-related proteins 1 and 2 in vitro. Pigment Cell Res 13:364–374PubMedCrossRefGoogle Scholar
  56. 56.
    Deng WD, Xi DM, Gou X, Yang SL, Shi XW, Mao HM (2007) Pigmentation in Black-boned sheep (Ovis aries): association with polymorphism of the Tyrosinase gene. Mol Biol Rep.  doi:10.1007/s11033-007-9097-z
  57. 57.
    Li JY, Christensen BM (1994) Effect of pH on the oxidation pathway of dopamine and dopa. J Electroanal Chem 375:219–231CrossRefGoogle Scholar
  58. 58.
    Fuller BB, Spaulding DT, Smith DR (2001) Regulation of the catalytic activity of preexisting tyrosinase in black and Caucasian human melanocyte cell cultures. Exp Cell Res 262: 197–208PubMedCrossRefGoogle Scholar
  59. 59.
    Smith DR, Spaulding DT, Glenn HM, Fuller BB (2004) The relationship between Na+/H+ exchanger expression and tyrosinese activeity in human melanocytes. Exp Cell Res 298:521–534PubMedCrossRefGoogle Scholar
  60. 60.
    Watabe H, Valencia JC, Yasumoto K, Kushimoto T, Ando H, Muller J, Vieira WD, Mizoguchi M, Appella E, Hearing VJ (2004) Regulation of tyrosinase processing and trafficking by organellar pH and by proteasome activity. J Biol Chem 279:7971–7981PubMedCrossRefGoogle Scholar
  61. 61.
    Ni-Komatsu L, Orlow SJ (2006) Heterologous expression of tyrosinase recapitulates the misprocessing and mistrafficking in oculocutaneous albinism type 2: Effects of altering intracellular pH and pink-eyed dilution gene expression. Exp Eye Res 82:519–528PubMedCrossRefGoogle Scholar
  62. 62.
    Wolf M, Bauder-Wust U, Haberkorn U, Mier W, Eisenhut M (2005) Alkylating benzamides with melanoma cytotoxicity: role of melanin, tyrosinase, intracellular pH and DNA interaction. Melanoma Res 15:383–391PubMedCrossRefGoogle Scholar
  63. 63.
    Lamason RL, Mohideen MA, Mest JR, Wong AC, Norton HL, Aros MC, Jurynec MJ, Mao X, Humphreville VR, Humbert JE, Sinha S, Moore JL, Jagadeeswaran P, Zhao W, Ning G, Makalowska I, McKeigue PM, O’donnell D, Kittles R, Parra EJ, Mangini NJ, Grunwald DJ, Shriver MD, Canfield VA, Cheng KC (2005) SLC24A5, a putative cation exchanger, affects pigmentation in zebrafish and humans. Science 310:1782–1786PubMedCrossRefGoogle Scholar
  64. 64.
    Soejima M, Koda Y (2007) Population differences of two coding SNPs in pigmentation-related genes SLC24A5 and SLC45A2. Int J Legal Med 121:36–39PubMedCrossRefGoogle Scholar
  65. 65.
    Chintala S, Li W, Lamoreux ML, Ito S, Wakamatsu K, Sviderskaya EV, Bennett DC, Park YM, Gahl WA, Huizing M, Spritz RA, Ben S, Novak EK, Tan J, Swank RT (2005) Slc7a11 gene controls production of pheomelanin pigment and proliferation of cultured cells. Proc Natl Acad Sci USA 102:10964–10969PubMedCrossRefGoogle Scholar
  66. 66.
    Hearing VJ (2005) Biogenesis of pigment granules: a sensitive way to regulate melanocyte function. J Dermatol Sci 37:3–14PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2007

Authors and Affiliations

  • W. D. Deng
    • 1
  • W. Shu
    • 1
  • S. L. Yang
    • 1
  • X. W. Shi
    • 1
  • H. M. Mao
    • 1
  1. 1.Yunnan Provincial Laboratory of Animal Nutrition and Feed Science, Faculty of Animal ScienceYunnan Agricultural UniversityKunmingChina

Personalised recommendations