Molecular Biology Reports

, Volume 36, Issue 1, pp 201–206

Upregulation of N-acetylaspartic acid alters inflammation, transcription and contractile associated protein levels in the stomach and smooth muscle contractility

Article

Abstract

N-acetylaspartic acid (NAA) is converted into aspartate and acetate by aspartoacylase. Abnormal levels of the enzyme leads to accumulation of NAA and these changes have been observed in Canavan disease and type 2 diabetes. How upregulation of NAA affect the gastrointestine protein levels and the function is not known. Incubation of rat stomach tissue with NAA 1.5 mM, 1.5 μM and 1.5 nM induced inflammatory agents TNFα, p38MAPK, iNOS, PKC, COX2 and ICAM3; transcription factors phospho-NF-kBp65, cjun and cfos; contractile proteins MLCK and phospho MLC; and calcium channel α1C and calcium channel, voltage-dependent, beta 3 subunit compared to their respective control. Incubation of circular smooth muscle cells with the above doses of NAA induced contractility compared to the control. These studies suggest that NAA alters proteins levels and smooth muscle contractility and these changes likely to contribute to gastrointestinal disorder seen in these diseases.

Keywords

Canavan disease Type 2 diabetes Inflammation Transcription factor Contractility Gastrointestine NAA 

References

  1. 1.
    Surendran S, Matalon R, Tyring SK (2006) Upregulation of aspartoacylase activity in the duodenum of obesity induced diabetes mouse: implications on diabetic neuropathy. Biochem Biophys Res Commun 345:973–975PubMedCrossRefGoogle Scholar
  2. 2.
    Surendran S, Bamforth FJ, Chan A, Tyring SK, Goodman SI, Matalon R (2003) Mild elevation of N-acetylaspartic acid and macrocephaly: diagnostic problem. J Child Neurol 18:809–812PubMedCrossRefGoogle Scholar
  3. 3.
    Surendran S, Kumaresan G (2007) Neurochemical changes and therapeutic approaches in Canavan disease. In: Surendran S (ed) Neurochemistry of metabolic diseases – lysosomal storage diseases, Phenylketonuria and Canavan disease. Transworld Research Network, Trivandrum, pp 119–132Google Scholar
  4. 4.
    Hagenfeldt L, Bollgren I, Venizelos N (1987) N-acetylaspartic aciduria due to aspartoacylase deficiency – a new aetiology of childhood leukodystrophy. J Inherit Metab Dis 10:135–141PubMedCrossRefGoogle Scholar
  5. 5.
    Matalon R, Michals K, Sebesta D, Deanching M, Gashkoff P, Casanova J (1988) Aspartoacylase deficiency and N-acetylaspartic aciduria in patients with Canavan disease. Am J Med Genet 29:463–471PubMedCrossRefGoogle Scholar
  6. 6.
    Surendran S, Campbell GA, Tyring SK, Matalon R (2005) Aspartoacylase gene knockout results in severe vacuolation in the white matter and gray matter of the spinal cord in the mouse. Neurobiol Dis 18:385–389PubMedCrossRefGoogle Scholar
  7. 7.
    Jakobs C, ten Brink HJ, Langelaar SA, Zee T, Stellaard F, Macek M, Srsnová K, Srsen S, Kleijer WJ (1991) Stable isotope dilution analysis of N-acetylaspartic acid in CSF, blood, urine and amniotic fluid: accurate postnatal diagnosis and the potential for prenatal diagnosis of Canavan disease. J Inherit Metab Dis 14:653–660PubMedCrossRefGoogle Scholar
  8. 8.
    Surendran S, Michals-Matalon K, Quast MJ, Tyring SK, Wei J, Ezell EL, Matalon R (2003) Canavan disease: a monogenic trait with complex genomic interaction. Mol Genet Metab 80:74–80PubMedCrossRefGoogle Scholar
  9. 9.
    Bennett MJ, Gibson KM, Sherwood WG, Divry P, Rolland MO, Elpeleg ON, Rinaldo P, Jakobs C (1993) Reliable prenatal diagnosis of Canavan disease (aspartoacylase deficiency): comparison of enzymatic and metabolite analysis. J Inherit Metab Dis 16:831–836PubMedCrossRefGoogle Scholar
  10. 10.
    Taylor DL, Davies SEC, Obrenovitch TP, Urenjak J, Richards DA, Clark JB, Symon L (1994) Extracellular N-acetylaspartate in the rat brain: in vivo determination of basal levels and changes evoked by high K1. J Neurochem 62:2349–2355PubMedCrossRefGoogle Scholar
  11. 11.
    Sager TN, Fink-Jensen A, Hansen AJ (1997) Transient elevation of interstitial N-acetylaspartate in reversible global brain ischemia. J Neurochem 68:675–682PubMedCrossRefGoogle Scholar
  12. 12.
    Baslow MH (2000) Functions of N-Acetyl-l-aspartate and N-acetyl-l- aspartylglutamate in the vertebrate Brain. J Neurochem 75:453–459PubMedCrossRefGoogle Scholar
  13. 13.
    Sager TN, Thomsen C, Valsborg JS, Laursen H, Hansen AJ (1999) Astroglia contain a specific transport mechanism for N-Acetyl-L-Aspartate. J Neurochem 73:807–811PubMedCrossRefGoogle Scholar
  14. 14.
    Hillier TA, Pedula KL (2003) Complications in young adults with early-onset type 2 diabetes: losing the relative protection of youth. Diabetes Care 26:2999–3005PubMedCrossRefGoogle Scholar
  15. 15.
    Vinik AI, Erbas T (2001) Recognizing and treating diabetic autonomic neuropathy. Cleve Clin J Med 68:928–930PubMedCrossRefGoogle Scholar
  16. 16.
    Surendran S, Kondapaka SB (2005) Altered expression of neuronal nitric oxide synthase in the duodenum longitudinal muscle-myenteric plexus of obesity induced diabetes mouse: implications on enteric neurodegeneration. Biochem Biophys Res Commun 338:919–922PubMedCrossRefGoogle Scholar
  17. 17.
    Vinik AI (1999) Diagnosis and management of diabetic neuropathy. Clin Geriatr Med 15:293–320PubMedGoogle Scholar
  18. 18.
    Farup CE, Leidy NK, Murray M, Williams GR, Helbers L, Quigley EMM (1998) Effect of domperidone on the health-related quality of life of patients with symptoms of diabetic gastroparesis. Diabetes Care 21:1699–1706PubMedCrossRefGoogle Scholar
  19. 19.
    Delaney CA, Tyrberg B, Bouwens L, Vaghef H, Hellman B, Eizirik DL (1997) Sensitivity of human pancreatic islets to peroxynitrite induced cell dysfunction and death. FEBS Lett 394:300–306CrossRefGoogle Scholar
  20. 20.
    Zhang YH, Heulsmann A, Tondravi MM, Mukherjee A, Abu-Amer Y (2001) Tumor necrosis factor-α (TNF) stimulates RANKL-induced osteoclastogenesis via coupling of TNF type 1 receptor and RANK signaling pathways. J Biol Chem 276:563–568PubMedCrossRefGoogle Scholar
  21. 21.
    Aguirre V, Uchida T, Yenush L, Davis R, White MF (2000) The c-Jun NH(2)-terminal kinase promotes insulin resistance during association with insulin receptor substrate-1 and phosphorylation of Ser(307). J Biol Chem 275:9047–9054PubMedCrossRefGoogle Scholar
  22. 22.
    Gomez-Hernandez A, Sanchez-Galan E, Martin-Ventura JL, Vidal C, Blanco-Colio LM, Ortego M, Vega M, Serrano J, Ortega L, Hernandez G, Tunon J, Egido J (2006) Atorvastatin reduces the expression of prostaglandin E2 receptors in human carotid atherosclerotic plaques and monocytic cells: potential implications for plaque stabilization. J Cardiovasc Pharmacol 47:60–69PubMedCrossRefGoogle Scholar
  23. 23.
    Martin-Ventura JL, Blanco-Colio LM, Gomez-Hernandez A, Munoz-Garcia B, Vega M, Serrano J, Ortega L, Hernandez G, Tunon J, Egido J (2005) Intensive treatment with atorvastatin reduces inflammation in mononuclear cells and human atherosclerotic lesions in one month. Stroke 36:1796–1800PubMedCrossRefGoogle Scholar
  24. 24.
    Mandrup-Poulsen T (1996) The role of interleukin-1 in the pathogenesis of IDDM. Diabetologia 39:1005–1029PubMedCrossRefGoogle Scholar
  25. 25.
    Rabinovitch A (1993) An update on cytokines in the pathogenesis of insulin-dependent diabetes mellitus. Diabetes Rev 1:215–240Google Scholar
  26. 26.
    Corbett JA, McDaniel ML (1992) Does nitric oxide mediate autoimmune destruction of beta-cells? Possible therapeutic interventions in IDDM. Diabetes 41:897–903PubMedCrossRefGoogle Scholar
  27. 27.
    Eizirik DL, Flodstrom M, Karlsen AE, Welsh N (1996) The harmony of the spheres: inducible nitric oxide synthase and related genes in pancreatic beta cells. Diabetologia 39:875–890PubMedCrossRefGoogle Scholar
  28. 28.
    Hirosumi J, Tuncman G, Chang L, Gorgun CZ, Uysal KT, Maeda K, Karin M, Hotamisligil GS (2002) A central role for JNK in obesity and insulin resistance. Nature 420:333–336PubMedCrossRefGoogle Scholar
  29. 29.
    Surendran S, Kondapaka SB (2005) Altered expression of neuronal nitric oxide synthase in the duodenum longitudinal muscle-myenteric plexus of obesity induced diabetes mouse: implications on enteric neurodegeneration. Biochem Biophys Res Commun 338:919–922PubMedCrossRefGoogle Scholar
  30. 30.
    Bushman TL, Kuemmerle JF (1998) IGFBP-3 and IGFBP-5 production by human intestinal muscle: reciprocal regulation by endogenous TGF-β1. Am J Physiol Gastrointest Liver Physiol 275:G1282–G1290Google Scholar
  31. 31.
    Kuemmerle JF (2000) Endogenous IGF-I regulates IGF binding protein production in human intestinal smooth muscle cells. Am J Physiol Gastrointest Liver Physiol 278:G710–G717PubMedGoogle Scholar
  32. 32.
    Cavaille F, Janmot C, Ropert S, d’Albis A (1986) Isoforms of myosin and actin in human, monkey and rat myometrium. Comparison of pregnant and non-pregnant uterus proteins. Eur J Biochem 160:507–513PubMedCrossRefGoogle Scholar
  33. 33.
    Nabeshima Y, Nabeshima Y, Nonomura Y, Fujii-Kuriyama Y (1987) Nonmuscle and smooth muscle myosin light chain mRNAs are generated from a single gene by the tissue-specific alternative RNA splicing. J Biol Chem 262:10608–10612PubMedGoogle Scholar
  34. 34.
    Hartel FV, Rodewald CW, Aslam M, Gunduz D, Hafer L, Neumann J, Piper HM, Noll T (2007) Extracellular ATP induces assembly and activation of the myosin light chain phosphatase complex in endothelial cells. Cardiovasc Res 74:487–496PubMedCrossRefGoogle Scholar
  35. 35.
    Sheldon R, Moy A, Lindsley K, Shasby S, Shasby DM (1993) Role of myosin light-chain phosphorylation in endothelial cell retraction. Am J Physiol 265:L606–L612PubMedGoogle Scholar
  36. 36.
    Goeckeler ZM, Wysolmerski RB (1995) Myosin light chain kinase regulated endothelial cell contraction: the relationship between isometric tension, actin polymerization, and myosin phosphorylation. J Cell Biol 130:613–627PubMedCrossRefGoogle Scholar
  37. 37.
    Dudek SM, Garcia JG (2001) Cytoskeletal regulation of pulmonary vascular permeability. J Appl Physiol 91:1487–1500PubMedGoogle Scholar
  38. 38.
    Bazzoni G, Dejana E (2004) Endothelial cell-to-cell junctions: molecular organization and role in vascular homeostasis. Physiol Rev 84:869–901PubMedCrossRefGoogle Scholar
  39. 39.
    Ikebe M, Hartshorne DJ (1985) Phosphorylation of smooth muscle myosin at two distinct sites by myosin light chain kinase. J Biol Chem 260:10027–10031PubMedGoogle Scholar
  40. 40.
    Somlyo AP, Somlyo AV (1994) Signal transduction and regulation in smooth muscle. Nature 231:231–236CrossRefGoogle Scholar
  41. 41.
    Klingenberg D, Gündüz D, Härtel F, Bindewald K, Schäfer M, Piper HM, Noll T (2004) MEK/MAPK as a signaling element in ATP control of endothelial myosin light chain. Am J Physiol Cell Physiol 286:C807–C812PubMedCrossRefGoogle Scholar
  42. 42.
    Lash JA, Helper DJ, Klug M, Nicolozakes AW, Hathaway DR (1990) Nucleotide and deduced amino acid sequence of cDNAs encoding two isoforms for the 17,000 dalton myosin light chain in bovine aortic smooth muscle. Nucleic Acids Res 18:7176PubMedCrossRefGoogle Scholar
  43. 43.
    Sakai N, Wada T, Furuichi K, Iwata Y, Yoshimoto K, Kitagawa K, Kokubo S, Kobayashi M, Hara A, Yamahana J, Okumura T, Takasawa K, Takeda S, Yoshimura M, Kida H, Yokoyama H (2005) Involvement of extracellular signal-regulated kinase and p38 in human diabetic nephropathy. Am J Kidney Dis 45:54–65PubMedCrossRefGoogle Scholar
  44. 44.
    Goldberg PL, MacNaughton DE, Clements RT, Minnear FL, Vincent PA (2002) p38 MAPK activation by TGF-beta1 increases MLC phosphorylation and endothelial monolayer permeability. Am J Physiol Lung Cell Mol Physiol 282:L146–L154PubMedGoogle Scholar
  45. 45.
    Nichols TC (2004) NF-kappaB and reperfusion injury. Drug News Perspect 17:99–104PubMedCrossRefGoogle Scholar
  46. 46.
    Angel P, Karin M (1991) The role of Jun, Fos and the AP-1 complex in cell-proliferation and transformation. Biochim Biophys Acta 1072:129–157PubMedGoogle Scholar
  47. 47.
    Han J, Ulevitch RJ (1999) Emerging targets for anti-inflammatory therapy. Nat Cell Biol 1:E39–E40PubMedCrossRefGoogle Scholar
  48. 48.
    Schaeffer HJ, Weber MJ (1999) Mitogen-activated protein kinases: specific messages from ubiquitous messengers. Mol Cell Biol 19:2435–2444PubMedGoogle Scholar
  49. 49.
    Griffin ME, Marcucci MJ, Cline GW, Bell K, Barucci N, Lee D, Goodyear LJ, Kraegen EW, White MF, Shulman GI (1999) Free fatty acid-induced insulin resistance is associated with activation of protein kinase C theta and alterations in the insulin signaling cascade. Diabetes 48:1270–1274PubMedCrossRefGoogle Scholar
  50. 50.
    Yuan M, Konstantopoulos N, Lee J, Hansen L, Li ZW, Karin M, Shoelson SE (2001) Reversal of obesity- and diet-induced insulin resistance with salicylates or targeted disruption of Ikkbeta. Science 293:1673–1677PubMedCrossRefGoogle Scholar
  51. 51.
    Yu RA, Yang CF, Chen XM (2006) DNA damage, apoptosis and C-myc, C-fos, and C-jun overexpression induced by selenium in rat hepatocytes. Biomed Environ Sci 19:197–204PubMedGoogle Scholar
  52. 52.
    Morgan EL, Mace OJ, Affleck J, Kellett GL (2007) Apical GLUT2 and Cav1.3: regulation of rat intestinal glucose and calcium absorption. J Physiol 580:593–604PubMedCrossRefGoogle Scholar
  53. 53.
    Koschak A, Reimer D, Huber I, Grabner M, Glossmann H, Engel J, Striessnig J (2001) α1D (Cav1.3) subunits can form L-type Ca2+ channels activating at negative voltages. J Biol Chem 276:22100–22106PubMedCrossRefGoogle Scholar
  54. 54.
    Lipscombe D, Helton TD, Xu W (2004) L-type calcium channels: the low down. J Neurophysiol 92:2633–2641PubMedCrossRefGoogle Scholar
  55. 55.
    Grider JR, Makhlouf GM (1988) Contraction mediated by Ca11 release in circular and Ca11 influx in longitudinal intestinal muscle cells. J Pharmacol Exp Ther 244:432–437PubMedGoogle Scholar
  56. 56.
    Li XQ, Zhao MG, Mei QB, Zhang YF, Guo W, Wang HF, Chen D, Cui Y (2003) Effects of tumor necrosis factor-alpha on calcium movement in rat ventricular myocytes. Acta Pharmacol Sin 24(12):1224–1230PubMedGoogle Scholar
  57. 57.
    Zhang JP, Ying X, Chen Y, Yang ZC, Huang YS (2007) Inhibition of p38 MAP kinase improves survival of cardiac myocytes with hypoxia and burn serum challenge. Burns [Epub ahead of print]Google Scholar
  58. 58.
    Grishin AV, Wang J, Potoka DA, Hackam DJ, Upperman JS, Boyle P, Zamora R, Ford HR (2006) Lipopolysaccharide induces cyclooxygenase-2 in intestinal epithelium via a noncanonical p38 MAPK pathway. J Immunol 176:580–588PubMedGoogle Scholar
  59. 59.
    van Hoogmoed LM, Harmon FA, Stanley S, White J, Snyder J (2002) In vitro investigation of the interaction between nitric oxide and cyclo-oxygenase activity in equine ventral colon smooth muscle. Equine Vet J 34:510–515PubMedCrossRefGoogle Scholar
  60. 60.
    Somlyo AP, Somlyo AV (2003) Ca2+ sensitivity of smooth muscle and nonmuscle myosin II: modulated by G proteins, kinases, and myosin phosphatase. Physiol Rev 83:1325–1358PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2007

Authors and Affiliations

  1. 1.Department of PediatricsUniversity of Texas Health Science CenterHoustonUSA

Personalised recommendations