Molecular Biology Reports

, Volume 36, Issue 1, pp 37–45 | Cite as

Combined effects of the angiogenic genes polymorphisms on prostate cancer susceptibility and aggressiveness

  • Sana Sfar
  • Hamadi Saad
  • Faouzi Mosbah
  • Lotfi Chouchane


The single-gene approaches in association studies of polygenic diseases are likely to provide limited value in predicting risk. The combined analysis of genetic variants that interact in the same pathway may amplify the effects of individual polymorphisms and enhance the predictive power. To evaluate higher order gene–gene interaction, we have examined the contribution of four angiogenic gene polymorphisms (VEGF-1154G/A; VEGF-634G/C; MMP9-1562C/T and TSP1-8831A/G) in combination to the risk of prostate cancer. For the combined analysis of VEGF and MMP9 SNPs, we found a significant gene–dosage effect for increasing numbers of potential high-risk genotypes. Compared to referent group (low-risk genotypes), individuals with one (OR = 2.79, P = 0.1), two (OR = 4.57, P = 0.02) and three high-risk genotypes (OR = 7.11, P = 0.01) had increasingly elevated risks of prostate cancer. Similarly, gene–gene interaction of VEGF and TSP1 polymorphisms increased risk of prostate cancer in additive manner (OR = 6.00, P = 0.03), although the TSP1 polymorphism itself was not associated with the risk. In addition, we examined the synergistic effect of these polymorphisms in relation to prostate cancer prognosis according to histopathological grade and clinical stage at diagnosis. Cross-classified analysis revealed potential higher order gene–gene interactions between VEGF and TSP1 polymorphisms in increasing the risk of developing an aggressive phenotype disease. Patients carrying three high-risk genotypes showed a 20-fold increased risk of high-grade tumor (OR = 20.75, P = 0.002). These results suggest that the gene–gene interaction of angiogenic gene polymorphisms’ increased risk of prostate cancer onset and aggressiveness.


Angiogenic pathway Combined analysis Cancer prognosis Gene–gene interactions Genetic susceptibility Prostate cancer 



We would like to thank all Tunisian subjects for their participation in this study. This work was supported by the Ministry of Higher Education and Scientific and Technological Research and the Ministry of Public Health of Tunisia. We would like to thank Mr. Adel Rdissi for the English revision.


  1. 1.
    ACS (2004) Cancer facts and figures. Atlanta: Amercian Cancer Socitey Google Scholar
  2. 2.
    Lichtenstein P, Holm NV, Verkasalo PK, Iliadou A, Kaprio J, Koskenvuo M, Pukkala E, Skytthe A, Hemminki K (2000) Environmental and heritable factors in the causation of cancer-analyses of cohorts of twins from Sweden, Denmark, and Finland. N Engl J Med 343(2):78–85PubMedCrossRefGoogle Scholar
  3. 3.
    Weidner N (1995) Intratumor microvessel density as a prognostic factor in cancer. Am J Pathol 147:9–19PubMedGoogle Scholar
  4. 4.
    Ellis LM, Fidler IJ (1996) Angiogenesis and metastasis. Eur J Cancer 32(14):2451–2460CrossRefGoogle Scholar
  5. 5.
    Hanahan D, Folkman J (1996) Patterns and emerging mechanisms of the angiogenic switch during tumorigenesis. Cell 86:353–364PubMedCrossRefGoogle Scholar
  6. 6.
    Folkman J (1995) Angiogenesis in cancer, vascular, rheumatoid and other disease. Nat Med 1:27–31PubMedCrossRefGoogle Scholar
  7. 7.
    Auerbach W, Auerbach R (1994) Angiogenesis inhibition: a review. Pharmacol Ther 63:265–311PubMedCrossRefGoogle Scholar
  8. 8.
    Folkman J, Klagsbrun M (1987) Angiogenic factors. Science 235:442–447PubMedCrossRefGoogle Scholar
  9. 9.
    Ferrara N, Davis-Smyth T (1997) The biology of vascular endothelial growth factor. Endocr Rev 18(1):4–25PubMedCrossRefGoogle Scholar
  10. 10.
    Ferrer FA, Miller LJ, Lindquist R, Kowalczyk P, Laudone VP, Albertsen PC, Kreutzer DL (1999) Expression of vascular endothelial growth factor receptors in human prostate cancer. Urology 54(3):567–572PubMedCrossRefGoogle Scholar
  11. 11.
    Stetler-Stevenson WG (1999) Matrix metalloproteinases in angiogenesis: a moving target for therapeutic intervention. J Clin Invest 103:1237–1244PubMedCrossRefGoogle Scholar
  12. 12.
    Stetler-Stevenson WG, Aznavoorian S, Liotta LA (1993) Tumor cell interactions with the extracellular matrix during invasion and metastasis. Annu Rev Cell Biol 9:541–573PubMedCrossRefGoogle Scholar
  13. 13.
    Murphy G, Gavrilovic J (1999) Proteolysis and cell migration: creating a path? Curr Opin Cell Biol 11:614–621PubMedCrossRefGoogle Scholar
  14. 14.
    Bergers G, Brekken R, McMahon G (2000) Matrix metalloproteinase-9 triggers the angiogenic switch during carcinogenesis. Nat Cell Biol 2:737–744PubMedCrossRefGoogle Scholar
  15. 15.
    Sheu BC, Hsu SM, Ho HN, Lien HC, Huang SC, Lin RH (2001) A novel role of metalloproteinase in cancer mediated immunosuppression. Cancer Res 61:237–242PubMedGoogle Scholar
  16. 16.
    Vu TH, Shipley JM, Bergers G, Berger JE, Helms JA, Hanahan D, Shapiro SD, Senior RM, Werb Z (1998) MMP-9/gelatinase B is a key regulator of growth plate angiogenesis and apoptosis of hypertrophic chondrocytes. Cell 93(3):411–422PubMedCrossRefGoogle Scholar
  17. 17.
    Huang Q, Shen HM, Ong CN (2004) Inhibitory effect of emodin on tumor invasion through suppression of activator protein-1 and nuclear factor-kappaB. Biochem Pharmacol 68:361–371PubMedCrossRefGoogle Scholar
  18. 18.
    Bok RA, Halabi S, Fei DT, Rodriquez CR, Hayes DF, Vogelzang NJ, Kantoff P, Shuman MA, Small EJ (2001) Vascular endothelial growth factor and basic fibroblast growth factor urine levels as predictors of outcome in hormone refractory prostate cancer patients: a cancer and leukemia group B study. Cancer Res 61(6):2533–2536PubMedGoogle Scholar
  19. 19.
    Vallbo C, Damber JE (2005) Thrombospondins, metallo proteases and thrombospondin receptors messenger RNA and protein expression in different tumour sublines of the Dunning prostate cancer model. Acta Oncol 44:293–298PubMedGoogle Scholar
  20. 20.
    Good DJ, Polverini PJ, Rastinejad F, Le Beau MM, Lemons RS, Frazier WA, Bouck NP (1990) A tumor suppressor-dependent inhibitor of angiogenesis is immunologically and functionally indistinguishable from a fragment of thrombospondin. Proc Natl Acad Sci USA 87(17):6624–6628PubMedCrossRefGoogle Scholar
  21. 21.
    Vogel T, Guo NH, Krutzsch HC, Blake DA, Hartman J, Mendelovitz S, Panet A, Roberts DD (1993) Modulation of endothelial cell proliferation, adhesion, and motility by recombinant heparin-binding domain and synthetic peptides from the type I repeats of thrombospondin. J Cell Biochem 53(1):74–84PubMedCrossRefGoogle Scholar
  22. 22.
    Tolsma SS, Volpert OV, Good DJ, Frazier WA, Polverini PJ, Bouck N (1993) Peptides derived from two separate domains of the matrix protein thrombospondin-1 have anti-angiogenic activity. J Cell Biol 122(2):497–511PubMedCrossRefGoogle Scholar
  23. 23.
    Jiménez B, Volpert OV, Crawford SE, Febbraio M, Silverstein RL, Bouck N (2000) Signals leading to apoptosis-dependent inhibition of neovascularization by thrombospondin-1. Nat Med 6(1):41–48PubMedCrossRefGoogle Scholar
  24. 24.
    Guo N, Krutzsch HC, Inman JK, Roberts DD (1997) Thrombospondin 1 and type I repeat peptides of thrombospondin 1 specifically induce apoptosis of endothelial cells. Cancer Res 57(9):1735–1742PubMedGoogle Scholar
  25. 25.
    Lawler J, Detmar M (2004) Tumor progression: the effects of thrombospondin-1 and -2. Int J Biochem Cell Biol 36:1038–1045PubMedCrossRefGoogle Scholar
  26. 26.
    Sfar S, Hassen E, Saad H, Mosbah F, Chouchane L (2006) Association of VEGF genetic polymorphisms with prostate carcinoma risk and clinical outcome. Cytokine 35(12):21–28PubMedCrossRefGoogle Scholar
  27. 27.
    Sfar S, Saad H, Mosbah F, Gabbouj S, Chouchane L (2007) TSP1 and MMP9 genetic variants in sporadic prostate cancer. Cancer Genet Cytogenet 172(1):38–44PubMedCrossRefGoogle Scholar
  28. 28.
    Miller SA, Dykes DD, Polesky HF (1988) A simple salting out procedure for extracting DNA from human nucleated cells. Nucleic Acids Res 16:1215PubMedCrossRefGoogle Scholar
  29. 29.
    McCarron SL, Edwards S, Evans PR, Gibbs R, Dearnaley DP, Dowe A, Southgate C, Easton DF, Eeles RA, Howell WM (2002) Influence of cytokine gene polymorphisms on the development of prostate cancer. Cancer Res 62(12):3369–3372PubMedGoogle Scholar
  30. 30.
    Schaid DJ (2004) The complex genetic epidemiology of prostate cancer. Hum Mol Genet 13:103–121CrossRefGoogle Scholar
  31. 31.
    Folkman J (1992) The role of angiogenesis in tumor growth. Semin Cancer Biol 3:65–71PubMedGoogle Scholar
  32. 32.
    Weidner N (1995) Intratumor microvessel density as a prognostic factor in cancer. Am J Pathol 147:9–19PubMedGoogle Scholar
  33. 33.
    Watson CJ, Webb NJ, Bottomley MJ, Brenchley PE (2000) Identification of polymorphisms within the vascular endothelial growth factor (VEGF) gene: correlation with variation in VEGF protein production. Cytokine 12(8):1232–1235PubMedCrossRefGoogle Scholar
  34. 34.
    Shahbazi M, Fryer AA, Pravica V, Brogan IJ, Ramsay HM, Hutchinson IV, Harden PN (2002) Vascular endothelial growth factor gene polymorphisms are associated with acute renal allograft rejection. J Am Soc Nephrol 13(1):260–264PubMedGoogle Scholar
  35. 35.
    Koukourakis MI, Papazoglou D, Giatromanolaki A, Bougioukas G, Maltezos E, Sivridis E (2004) VEGF gene sequence variation defines VEGF gene expression status and angiogenic activity in non-small cell lung cancer. Lung Cancer 46(3):293–298PubMedCrossRefGoogle Scholar
  36. 36.
    Lambrechts D, Storkebaum E, Morimoto M, Del-Favero J, Desmet F, Marklund SL, Wyns S, Thijs V, Andersson J, van Marion I, Al-Chalabi A, Bornes S, Musson R, Hansen V, Beckman L, Adolfsson R, Pall HS, Prats H, Vermeire S, Rutgeerts P, Katayama S, Awata T, Leigh N, Lang-Lazdunski L, Dewerchin M, Shaw C, Moons L, Vlietinck R, Morrison KE, Robberecht W, Van Broeckhoven C, Collen D, Andersen PM, Carmeliet P (2003) VEGF is a modifier of amyotrophic lateral sclerosis in mice and humans and protects motoneurons against ischemic death. Nat Genet 34:383–394PubMedCrossRefGoogle Scholar
  37. 37.
    Awata T, Inoue K, Kurihara S, Ohkubo T, Watanabe M, Inukai K, Inoue I, Katayama S (2002) A common polymorphism in the 50-untranslated region of the VEGF gene is associated with diabetic retinopathy in type 2 diabetes. Diabetes 51(5):1635–1639PubMedCrossRefGoogle Scholar
  38. 38.
    Awata T, Kurihara S, Takata N, Neda T, Iizuka H, Ohkubo T, Osaki M, Watanabe M, Nakashima Y, Inukai K, Inoue I, Kawasaki I, Mori K, Yoneya S, Katayama S (2005) Functional VEGF C-634G polymorphism is associated with development of diabetic macular edema and correlated with macular retinal thickness in type 2 diabetes. Biochem Biophys Res Commun 333(3):679–685PubMedCrossRefGoogle Scholar
  39. 39.
    Zhang B, Ye S, Herrmann SM, Eriksson P, de Maat M, Evans A, Arveiler D, Luc G, Cambien F, Hamsten A, Watkins H, Henney AM (1999) Functional polymorphism in the regulatory region of gelatinase B gene in relation to severity of coronary atherosclerosis. Circulation 99:1788–1794PubMedGoogle Scholar
  40. 40.
    Weidner N, Carroll PR, Flax J, Blumenfeld W, Folkman J (1993) Tumor angiogenesis correlates with metastasis in invasive prostate carcinoma. Am J Pathol 143(2):401–409PubMedGoogle Scholar
  41. 41.
    Freeman MR, Schneck FX, Gagnon ML, Corless C, Soker S, Niknejad K, Peoples GE, Klagsbrun M (1995) Peripheral blood T lymphocytes and lymphocytes infiltrating human cancers express vascular endothelial growth factor: a potential role for T cells in angiogenesis. Cancer Res 55:4140PubMedGoogle Scholar
  42. 42.
    Owen JL, Iragavarapu-Charyulu V, Gunja-Smith Z, Herbert LM, Grosso JF, Lopez DM (2003) Up-regulation of matrix metalloproteinase-9 in T lymphocytes of mammary tumor bearers: role of vascular endothelial growth factor. J Immunol 171(8):4340–4351PubMedGoogle Scholar
  43. 43.
    Miltenburg AM, Lacraz S, Welgus HG, Dayer JM (1995) Immobilized anti-CD3 antibody activates T cell clones to induce the production of interstitial collagenase, but not tissue inhibitor of metalloproteinases, in monocytic THP-1 cells and dermal fibroblasts. J Immunol 154:2655PubMedGoogle Scholar
  44. 44.
    Gabrilovich DI, Chen HL, Girgis KR, Cunningham HT, Meny GM, Nadaf S, Kavanaugh D, Carbone DP (1996) Production of vascular endothelial growth factor by human tumors inhibits the functional maturation of dendritic cells. Nat Med 2:1096PubMedCrossRefGoogle Scholar
  45. 45.
    Wang H, Keiser JA (1998) Vascular endothelial growth factor upregulates the expression of matrix metalloproteinases in vascular smooth muscle cells: role of flt-1. Circ Res 83:832PubMedGoogle Scholar
  46. 46.
    Rooprai HK, Rucklidge GJ, Panou C, Pilkington GJ (2000) The effects of exogenous growth factors on matrix metalloproteinase secretion by human brain tumour cells. Brit J Cancer 82:52PubMedCrossRefGoogle Scholar
  47. 47.
    Dias S, Hattori K, Zhu Z, Heissig B, Choy M, Lane W, Wu Y, Chadburn A, Hyjek E, Gill M, Hicklin DJ, Witte L, Moore MA, Rafii S (2000) Autocrine stimulation of VEGFR-2 activates human leukemic cell growth and migration. J Clin Invest 106:511PubMedCrossRefGoogle Scholar
  48. 48.
    Topol EJ, McCarthy J, Gabriel S, Moliterno DJ, Rogers WJ, Newby LK, Freedman M, Metivier J, Cannata R, O’Donnell CJ, Kottke-Marchant K, Murugesan G, Plow EF, Stenina O, Daley GQ (2001) Single nucleotide polymorphisms in multiple novel thrombospondin genes may be associated with familial premature myocardial infarction. Circulation 104:2641–2644PubMedCrossRefGoogle Scholar
  49. 49.
    Hannah BL, Misenheimer TM, Pranghofer MM, Mosher DF (2004) A polymorphism in thrombospondin-1 associated with familial premature coronary artery disease alters Ca2þ binding. J Biol Chem 279:51915–51922PubMedCrossRefGoogle Scholar
  50. 50.
    Hannah BL, Misenheimer TM, Annis DS, Mosher DF (2003) A polymorphism in thrombospondin-1 associated with familial premature coronary heart disease causes a local change in conformation of the Ca2þ-binding repeats. J Biol Chem 278:8929–8934PubMedCrossRefGoogle Scholar
  51. 51.
    Lawler J, Derick LH, Connolly JE, Chen JH, Chao FC (1985) The structure of human platelet thrombospondin. J Biol Chem 260:3762–3772PubMedGoogle Scholar
  52. 52.
    Narizhneva NV, Byers-Ward VJ, Quinn MJ, Zidar FJ, Plow EF, Topol EJ, Byzova TV (2004) Molecular and functional differences induced in thrombospondin-1 by the single nucleotide polymorphism associated with the risk of premature, familial myocardial infarction. J Biol Chem 279:21651–21657PubMedCrossRefGoogle Scholar
  53. 53.
    Mazzucchelli R, Montironi R, Santinelli A, Lucarini G, Pugnaloni A, Biagini G (2000) Vascular endothelial growth factor expression and capillary architecture in high-grade PIN and prostate cancer in untreated and androgen-ablated patients. Prostate 45:72–79PubMedCrossRefGoogle Scholar
  54. 54.
    Vallbo C, Damber JE (2005) Thrombospondins, metallo proteases and thrombospondin receptors messenger RNA and protein expression in different tumour sublines of the Dunning prostate cancer model. Acta Oncol 44:293–298PubMedCrossRefGoogle Scholar
  55. 55.
    Rodriguez-Manzaneque JC, Lane TF, Ortega MA, Hynes RO, Lawler J, Iruela-Arispe ML (2001) Thrombospondin-1 supresses tumor growth by a novel mechanism that includes blockade of matrix matalloproteinase-9 activation. Proc Natl Acad Sci USA 98:12485–12490PubMedCrossRefGoogle Scholar
  56. 56.
    Gupta K, Gupta P, Wild R, Ramakrishnan S, Hebbel RP (1999) Binding and displacement of vascular endothelial growth factor (VEGF) by thrombospondin: effect on human microvascular endothelial cell proliferation and angiogenesis. Angiogenesis 3:147–158PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2007

Authors and Affiliations

  • Sana Sfar
    • 1
  • Hamadi Saad
    • 2
  • Faouzi Mosbah
    • 3
  • Lotfi Chouchane
    • 1
  1. 1.Department of Molecular Immuno-OncologyFaculty of MedicineMonastirTunisia
  2. 2.Department of UrologyEPS Fattouma BourguibaMonastirTunisia
  3. 3.Department of UrologyEPS SahloulSousseTunisia

Personalised recommendations