Advertisement

Molecular Biology Reports

, Volume 34, Issue 3, pp 145–154 | Cite as

Fungal substances as modulators of NF-κB activation pathway

  • Roumyana D. Petrova
  • Jamal Mahajna
  • Abraham Z. Reznick
  • Solomon P. Wasser
  • Cvetomir M. Denchev
  • Eviatar Nevo
Original Paper

Abstract

MCF7 breast cancer cell line, carrying a luciferase reporter gene under the control of nuclear factor kappa B (NF-κB)-responsive promoter, was established and used for the screening of fungal organic extracts for their ability to interfere with the NF-κB activation pathway. Twenty-eight crude fungal extracts, out of 242, were found to inhibit NF-κB reporter activity by more than 40%. Furthermore, positive extracts were used to evaluate their antiproliferative activity as well as their ability to influence the phosphorylation and degradation levels of IκBa. Fungal extracts prepared from Marasmius oreades and Cyathus striatus showed significant inhibitory effects on the NF-κB activation pathway. Taken together, our results support the notion of the presence of novel activities that might be utilized as cancer therapeutics.

Keywords

Fungal substances IκBα degradation IκBα phosphorylation NF-κB activation pathway 

Abbreviations

CL

culture liquid

DEE

diethyl ether

DMSO

dimethyl sulfoxide

EAC

ethyl acetate

EAL

ethyl alcohol

FCS

fetal calf serum

IκB

inhibitory protein kappa B

NF-κB

nuclear factor kappa B

TNF-α

tumor necrosis factor-α

Notes

Acknowledgments

We thank Dr. J. Duyster, Department of Internal Medicine III, Technical University of Munich, Munich, Germany, for providing the Baf3/p185 Bcr-Abl cell line. We also thank Novartis Pharmaceuticals, Basel, Switzerland, for providing the Imatinib mesylate (Gleevec). We thank Mrs. Robin Permut for the English editing of the paper. This research was partly supported by the Ministry of Science and Technology of Israel, Grant No. alona5246 to J.M.

References

  1. 1.
    Wasser SP, Weis AL (1999) Medicinal properties of substances occurring in higher Basidiomycetes mushrooms: current perspectives (Review). Int J Med Mushr 1:31–62Google Scholar
  2. 2.
    Wasser SP, Weis AL (1999) Therapeutic effects of substances occurring in higher Basidiomycetes mushrooms: a modern perspective. Crit Rev Immunol 19:65–96PubMedGoogle Scholar
  3. 3.
    Zaidman B, Yassin M, Mahajna J, Wasser SP (2005) Medicinal mushroom modulators of molecular targets as cancer therapeutics. Appl Microbiol Biotechnol 67(4):453–468PubMedCrossRefGoogle Scholar
  4. 4.
    Smith JE, Rowan NJ, Sullivan R (2002) Medicinal mushrooms: their therapeutic properties and current medical usage with special emphasis on cancer treatments. Cancer Research UK. University of Strathclyde, GlasgowGoogle Scholar
  5. 5.
    McMoris TC, Anchel MJ (1963) The structures of the basidiomycete metabolites illudin S and illudin M. J Am Chem Soc 85:831CrossRefGoogle Scholar
  6. 6.
    McMoris TC, Yu J, Lira R, Dawe R, McDonald JR, Waters SJ, Estes LA, Kelner MJ (2001) Structure–activity studies of antitumor agent irofulven (hydroxymethylacylfulvene) and analogues. J Org Chem 66:6158–6163CrossRefGoogle Scholar
  7. 7.
    Dick RA, Yu X, Kensler TW (2004) NADPH alkenal/one oxidoreductase activity determines sensitivity of cancer cells to the chemotherapeutic alkylating agent irofulven. Clin Cancer Res 10(4):1492–1499PubMedCrossRefGoogle Scholar
  8. 8.
    Jong SC, Donovick R (1989) Antitumor and antiviral substances from fungi. Adv Appl Microbiol 34:183–262PubMedCrossRefGoogle Scholar
  9. 9.
    Wolf-Reiner A (2001) Bioactive sesquiterpenes produced by fungi: are they useful for humans as well? Curr Med Chem 8:583–606Google Scholar
  10. 10.
    Dembitsky VM, Rezanka T, Spizek J, Hanus LO (2005) Secondary metabolites of slime molds (myxomycetes). Phytochemistry 66:747–769PubMedCrossRefGoogle Scholar
  11. 11.
    Lorenzen K, Anke T (1998) Basidiomycetes as a source for new bioactive natural products. Curr Org Chem 2:329–364Google Scholar
  12. 12.
    Smania A Jr, Monache FD, Smania EFA, Cuneo RS (1999) Antibacterial activity of steroidal compounds isolated from Ganoderma applanatum (Pers.) Pat. (Aphyllophoromycetidae) fruit body. Int J Med Mushr 1:325–330Google Scholar
  13. 13.
    Smania EFA, Monache FD, Smania A Jr, Yunes RA, Cuneo RS (2003) Antifungal activity of sterols and triterpenes isolated from Ganoderma annulare. Fitoterapia 74:375–377PubMedCrossRefGoogle Scholar
  14. 14.
    Shiao MS (2003) Natural products of the medicinal mushroom Ganoderma lucidum: occurrence, biological activities, and pharmacological functions. Chem Rec 3:172–180PubMedCrossRefGoogle Scholar
  15. 15.
    Sliva D (2003) Ganoderma lucidum (reishi) in cancer treatment. Inegr Cancer Ther 2(4):358–364CrossRefGoogle Scholar
  16. 16.
    Lindequist U, Niedermeyer THJ, Julich WD (2005) The pharmacological potential of mushrooms. eCAM 2(3):285–299PubMedGoogle Scholar
  17. 17.
    Zjawiony JK (2004) Biologically active compounds from Aphyllophorales (Polypore) Fungi. J Nat Prod 67:300–310PubMedCrossRefGoogle Scholar
  18. 18.
    Nakshatri H, Bhat-Nakshatri P, Martin DA, Goulet RJ Jr, Sledge GW Jr (1997) Constitutive activation of NF-κB during progression of breast cancer to hormone-independent growth. Mol Cell Biol 17:3629–3639PubMedGoogle Scholar
  19. 19.
    Pahl H (1999) Activators and target genes of Rel/NF-κB transcription factors. Oncogene 18:6853–6866PubMedCrossRefGoogle Scholar
  20. 20.
    Zandi E, Karin M (1999) Bridging the gap: composition, regulation, and physiological function of the IκB kinase complex. Mol Cell Biol 19:4547–4551PubMedGoogle Scholar
  21. 21.
    Karin M, Ben-Neriah Y (2000) Phosphorylation meets ubiquitination: the control of NF-[k]B activity. Ann Rev Immunol 18:621–663CrossRefGoogle Scholar
  22. 22.
    Karin M, Cao Y, Greten FR, Li ZW (2002) NF-κB in cancer: from innocent bystander to major culprit. Nat Rev Cancer 2:301–310PubMedCrossRefGoogle Scholar
  23. 23.
    Petrova RD, Wasser SP, Mahajna JA, Denchev CM, Nevo E (2005) Potential role of medicinal mushrooms in breast cancer treatment: current knowledge and future perspectives. Int J Med Mushr 7(1):141–156CrossRefGoogle Scholar
  24. 24.
    Petrova RD, Wasser SP, Mahajna JA, Denchev CM, Nevo E (2005) Medicinal mushrooms: a new source for breast cancer therapeutics. Int J Med Mushr 7(2–3):445–446Google Scholar
  25. 25.
    Mattila P, Könkö K, Eurola M, Pihlava J-M, Astola J, Vahteristo L, Hietaniemi V, Kumpulainen J, Valtonen M, Piironen V (2001) Contents of vitamins, mineral elements, and some phenolic compounds in cultivated mushrooms. J Agric Food Chem 49:2343–2348PubMedCrossRefGoogle Scholar
  26. 26.
    Nakamura T, Akiyama Y, Matsugo S, Uzuka Y, Shibata K, Kawagishi H (2003) Purification of caffeic acid as an antioxidant from submerged culture mycelia of Phellinus linteus (Berk. et Curt.) Teng (Aphyllophoromycetidae). Int J Med Mushr 5:163–167CrossRefGoogle Scholar
  27. 27.
    Park YM, Kim IT, Park HJ, Choi JW, Park KY, Lee JD, Nam BH, Kim DG, Lee JY, Lee KT (2004) Anti-inflammatory and anti-nociceptive effects of the methanol extract of Fomes fomentarius. Biol Pharm Bull 27(10):1588–1593PubMedCrossRefGoogle Scholar
  28. 28.
    Kis Z, Closse A, Sigg HP, Hruban L, Snatzke G (1970) Die struktur von panepoxydon und verwandten pilzmetaboliten. Helv Chim Acta 53(7):1577–1597CrossRefGoogle Scholar
  29. 29.
    Erkel G, Anke T, Sterner O (1996) Inhibition of NF-κB activation by panepoxydone. Biochem Biophys Res Commun 226:214–221PubMedCrossRefGoogle Scholar
  30. 30.
    Yassin M, Mahajna JA, Wasser SP (2003) Submerged cultured mycelium extracts of higher Basidiomycetes mushrooms selectively inhibit proliferation and induce differentiation of K562 human chronic myelogenous leukemia cells. Int J Med Mushr 5:261–276CrossRefGoogle Scholar
  31. 31.
    Khan IA, Alam SS, Jabbar A (2001) Standardization of medium for the production of maximum phytotoxic activity by Fusarium oxysporum f. sp. ciceris. Pakistan J Biol Sci 4(11):1374–1376CrossRefGoogle Scholar
  32. 32.
    Talwar GP (1974) Handbook of practical immunology. National Book Trust, New DelhiGoogle Scholar
  33. 33.
    Bar-Shai M, Reznick AZ (2006) Peroxynitrite induces an alternative NF-κB activation pathway in L8 rat myoblasts. Antioxid Redox Signal 8:639–652PubMedCrossRefGoogle Scholar
  34. 34.
    Karin M, Greten FR (2005) NF-κB: linking inflammation and immunity to cancer development and progression. Nat Rev 5:749–759CrossRefGoogle Scholar
  35. 35.
    Aggarwal BB, Sethi G, Nair A, Ichikawa H (2006) Nuclear factor-κB: a holy grail in cancer prevention and therapy. Curr Sign Transd Ther 1:25–52CrossRefGoogle Scholar
  36. 36.
    Wasser SP (2002) Medicinal mushrooms as a source of antitumor and immunomodulating polysaccharides. Appl Microbiol Biotechnol 60:258–274PubMedCrossRefGoogle Scholar
  37. 37.
    Watabe M, Hishikawa K, Takayanagi A, Shimizu N, Nakaki T (2004) Caffeic acid phenetyl ester induces apoptosis by inhibition of NF-κB and activation of Fas in human breast cancer MCF-7 cells. J Biol Chem 279(7):6017–6026PubMedCrossRefGoogle Scholar
  38. 38.
    Lu Q-Y, Sartippour MR, Brooks MN, Zhang Q, Hardy M, Go VL, Li FP, Heber D (2004) Ganoderma lucidum spore extract inhibits endothelial and breast cancer cells in vitro. Oncol Rep 12:659–662PubMedGoogle Scholar
  39. 39.
    Tomasi S, Lohezic-Le DF, Sauleau P, Bezivin C, Boustie J (2004) Cytotoxic activity of methanol extracts from Basidiomycete mushrooms on murine cancer cell lines. Pharmazie 59(4):290–293PubMedGoogle Scholar
  40. 40.
    Tateno H, Goldstein IJ (2004) Partial identification of carbohydrate-binding sites of a Galalpha1,3Galbeta1,4GlcNAc-specific lectin from the mushroom Marasmius oreades by site-directed mutagenesis. Arch Biochem Biophys 427(1):101–109PubMedCrossRefGoogle Scholar
  41. 41.
    Warner RL, Winter HC, Speyer CL, Varani J, Oldstein IJ, Murphy HS, Johnson KJ (2004) Marasmius oreades lectin induces renal thrombotic microangiopathic lesions. Exp Mol Pathol 77(2):77–84PubMedCrossRefGoogle Scholar
  42. 42.
    Davies DG, Hodge P (2005) Biosynthesis of the allene (−)-marasin in Marasmius ramealis. Org Biomol Chem 3:1690–1693PubMedCrossRefGoogle Scholar
  43. 43.
    Tobe Y, Yamashita D, Takahashi T, Inata M, Sato J, Kakiuchi K, Kobiro K, Odaira Y (1990) Synthesis of (±)-marasmic acid via 1-oxaspirohexane rearrangement. J Am Chem Soc 112:775–779CrossRefGoogle Scholar
  44. 44.
    Anke T, Kupka J, Shramm G, Steglich W (1980) Antibiotics from basidiomycetes. X. Scorodonin, a new antibacterial and antifungal metabolite from Marasmius scorodonius (Fr.). Fr J Antibiot (Tokyo) 33(5):463–467Google Scholar
  45. 45.
    Allbutt AD, Ayer WA, Brodie HJ, Johri BN, Taube H (1970) Cyathin, a new antibiotic complex produced by Cyathus helenae. Can J Microbiol 17:1401–1407CrossRefGoogle Scholar
  46. 46.
    Anke T, Oberwinkler F, Steglich W, Höfle G (1976) The striatins—new antibiotics from the basidiomycete Cyathus striatus (Huds. ex Pers.). Wild J Antibiot 30(3):221–225Google Scholar
  47. 47.
    Ayer WA, Paice MG (1976) Metabolites of the Bird’s Nest Fungi. Part 4. The isolation and structure determination of cybullol, a metabolite of Cyathus bulleri Brodie. Can J Chem 54:910–916CrossRefGoogle Scholar
  48. 48.
    Ayer WA, McCaskill RH (1981) The cybrodins, a new class of sesquiterpenes. Can J Chem 59(14):2150–2158CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, Inc. 2006

Authors and Affiliations

  • Roumyana D. Petrova
    • 1
    • 2
    • 3
  • Jamal Mahajna
    • 2
  • Abraham Z. Reznick
    • 3
  • Solomon P. Wasser
    • 1
  • Cvetomir M. Denchev
    • 4
  • Eviatar Nevo
    • 1
  1. 1.International Center for Cryptogamic Plants and Fungi, Institute of EvolutionUniversity of HaifaHaifaIsrael
  2. 2.Migal-Galilee Technology CenterSouth Industrial ZoneKiryat ShmonaIsrael
  3. 3.Faculty of MedicineTechnionHaifaIsrael
  4. 4.Institute of Life Science and Natural ResourcesKorea UniversitySeoulKorea

Personalised recommendations