Advertisement

Molecular Breeding

, 39:168 | Cite as

The transport of essential micronutrients in rice

  • Khurram BashirEmail author
  • Motoaki Seki
  • Naoko K. NishizawaEmail author
Article
  • 110 Downloads
Part of the following topical collections:
  1. Topical Collection on Rice Functional Genomics

Abstract

Micronutrients such as iron (Fe), copper (Cu), manganese (Mn), and zinc (Zn) are integral to living organisms for normal growth and reproduction. In plants, these minerals are involved in various cellular and molecular processes, such as chlorophyll synthesis and photosynthesis (Cu, Fe, and Mn), respiration (Cu and Fe), and stabilization of DNA and gene expression (Zn). A deficiency or an excess of these minerals severely impairs plant growth and development. When soil pH is high, these elements are often present as oxidized compounds, making their uptake extremely difficult. Plants utilize complex mechanisms to acquire these minerals from the rhizosphere, transport them from roots to shoots, and deliver them to developing tissues and edible parts of the plants. Uptake of these metals is extremely complex and tightly regulated. Cadmium, which is toxic for all living organisms, significantly interferes with the uptake of these metals. Here, we review recent developments in understanding metal transport in plants with a particular focus on rice and discuss strategies for breeding crop plants suitable for a diverse range of soils and climates, which will contribute to the production of healthier food for human consumption.

Keywords

Oryza sativa Iron Cadmium Copper Manganese Zinc Biofortification Fe deficiency 

Notes

Acknowledgments

We thank Dr. Takanori Kobayashi (Ishikawa Prefectural University, Japan) for critically reading this manuscript.

Authors’ contributions

K.B. wrote the manuscript, MS and NKN improved the manuscript. K.B and NKN finalized the manuscript.

Funding information

NKN received a grant from Advanced Low Carbon Technology Research and Development Program (ALCA) of the Japan Science and Technology Agency (Grant No. JPMJAL1107).

Compliance with ethical standards

Competing interests

The authors declare that they have no competing interests.

Ethics approval and consent to participate

Not applicable.

Consent for publication

Not applicable.

References

  1. Ando Y, Nagata S, Yanagisawa S, Yoneyama T (2013) Copper in xylem and phloem saps from rice (Oryza sativa): the effect of moderate copper concentrations in the growth medium on the accumulation of five essential metals and a speciation analysis of copper-containing compounds. Funct Plant Biol 40(1):89–100CrossRefGoogle Scholar
  2. Aoyama T, Kobayashi T, Takahashi M, Nagasaka S, Usuda K, Kakei Y, Ishimaru Y, Nakanishi H, Mori S, Nishizawa N (2009) OsYSL18 is a rice iron(III)-deoxymugineic acid transporter specifically expressed in reproductive organs and phloem of lamina joints. Plant Mol Biol 70(6):681–692PubMedPubMedCentralCrossRefGoogle Scholar
  3. Ariga T, Hazama K, Yanagisawa S, Yoneyama T (2014) Chemical forms of iron in xylem sap from graminaceous and non-graminaceous plants. Soil Sci Plant Nutr 60(4):460–469.  https://doi.org/10.1080/00380768.2014.922406 CrossRefGoogle Scholar
  4. Aung MS, Masuda H, Kobayashi T, Nakanishi H, Yamakawa T, Nishizawa NK (2013) Iron biofortification of Myanmar rice. Front Plant Sci 4:158.  https://doi.org/10.3389/fpls.2013.00158 CrossRefPubMedPubMedCentralGoogle Scholar
  5. Bashir K, Nishizawa NK (2006) Deoxymugineic acid synthase: a gene important for Fe-acquisition and homeostasis. Plant Signal Behav 1(6):292.  https://doi.org/10.4161/psb.1.6.3590 CrossRefGoogle Scholar
  6. Bashir K, Inoue H, Nagasaka S, Takahashi M, Nakanishi H, Mori S, Nishizawa NK (2006) Cloning and characterization of deoxymugineic acid synthase genes from graminaceous plants. J Biol Chem 281(43):32395–32402.  https://doi.org/10.1074/jbc.M604133200 CrossRefPubMedPubMedCentralGoogle Scholar
  7. Bashir K, Ishimaru Y, Nishizawa NK (2011a) Identification and characterization of the major mitochondrial Fe transporter in rice. Plant Signal Behav 6(10):1591–1593.  https://doi.org/10.4161/psb.6.10.17132 CrossRefPubMedPubMedCentralGoogle Scholar
  8. Bashir K, Ishimaru Y, Shimo H, Kakei Y, Senoura T, Takahashi R, Sato Y, Sato Y, Uozumi N, Nakanishi H, Nishizawa NK (2011b) Rice phenolics efflux transporter 2 (PEZ2) plays an important role in solubilizing apoplasmic iron. Soil Sci Plant Nutr 57(6):803–812.  https://doi.org/10.1080/00380768.2011.637305 CrossRefGoogle Scholar
  9. Bashir K, Ishimaru Y, Shimo H, Nagasaka S, Fujimoto M, Takanashi H, Tsutsumi N, An G, Nakanishi H, Nishizawa NK (2011c) The rice mitochondrial iron transporter is essential for plant growth. Nat Commun 2:322.  https://doi.org/10.1038/ncomms1326 CrossRefPubMedPubMedCentralGoogle Scholar
  10. Bashir K, Ishimaru Y, Nishizawa N (2012) Molecular mechanisms of zinc uptake and translocation in rice. Plant Soil 361(1-2):189–201.  https://doi.org/10.1007/s11104-012-1240-5 CrossRefGoogle Scholar
  11. Bashir K, Nozoye T, Ishimaru Y, Nakanishi H, Nishizawa NK (2013a) Exploiting new tools for iron bio-fortification of rice. Biotechnol Adv 31(8):1624–1633.  https://doi.org/10.1016/j.biotechadv.2013.08.012 CrossRefPubMedPubMedCentralGoogle Scholar
  12. Bashir K, Takahashi R, Akhtar S, Ishimaru Y, Nakanishi H, Nishizawa NK (2013b) The knockdown of OsVIT2 and MIT affects iron localization in rice seed. Rice 6(1):1–7.  https://doi.org/10.1186/1939-8433-6-31 CrossRefGoogle Scholar
  13. Bashir K, Takahashi R, Nakanishi H, Nishizawa NK (2013c) The road to micronutrient biofortification of rice: progress and prospects. Front Plant Sci 4(15).  https://doi.org/10.3389/fpls.2013.00015
  14. Bashir K, Hanada K, Shimizu M, Seki M, Nakanishi H, Nishizawa NK (2014) Transcriptomic analysis of rice in response to iron deficiency and excess. Rice 7(1):18.  https://doi.org/10.1186/s12284-014-0018-1 CrossRefPubMedPubMedCentralGoogle Scholar
  15. Bashir K, Ishimaru Y, Itai R, Senoura T, Takahashi M, An G, Oikawa T, Ueda M, Sato A, Uozumi N, Nakanishi H, Nishizawa N (2015) Iron deficiency regulated OsOPT7 is essential for iron homeostasis in rice. Plant Mol Biol 88(1-2):165–176.  https://doi.org/10.1007/s11103-015-0315-0 CrossRefPubMedPubMedCentralGoogle Scholar
  16. Bashir K, Rasheed S, Kobayashi T, Seki M, Nishizawa NK (2016) Regulating subcellular metal homeostasis: the key to crop improvement. Front Plant Sci 7.  https://doi.org/10.3389/fpls.2016.01192
  17. Bashir K, Nozoye T, Nagasaka S, Rasheed S, Miyauchi N, Seki M, Nakanishi H, Nishizawa NK (2017) Paralogs and mutants show that one DMA synthase functions in iron homeostasis in rice. J Exp Bot 68(7):1785–1795.  https://doi.org/10.1093/jxb/erx065 CrossRefPubMedPubMedCentralGoogle Scholar
  18. Bashir K, Matsui A, Rasheed S, Seki M (2019) Recent advances in the characterization of plant transcriptomes in response to drought, salinity, heat, and cold stress [version 1; peer review: 2 approved]. F1000Research 8:658 https://orcid.org/0000-0001-7123-8380 CrossRefGoogle Scholar
  19. Bastow EL, Garcia de la Torre VS, Maclean AE, Green RT, Merlot S, Thomine S, Balk J (2018) Vacuolar iron stores gated by NRAMP3 and NRAMP4 are the primary source of iron in germinating seeds. Plant Physiol 177(3):1267–1276.  https://doi.org/10.1104/pp.18.00478 CrossRefPubMedPubMedCentralGoogle Scholar
  20. Bost M, Houdart S, Oberli M, Kalonji E, Huneau J-F, Margaritis I (2016) Dietary copper and human health: current evidence and unresolved issues. J Trace Elem Med Biol 35:107–115.  https://doi.org/10.1016/j.jtemb.2016.02.006 CrossRefPubMedPubMedCentralGoogle Scholar
  21. Briat J-F, Dubos C, Gaymard F (2015) Iron nutrition, biomass production, and plant product quality. Trends Plant Sci 20.  https://doi.org/10.1016/j.tplants.2014.07.005 PubMedCrossRefPubMedCentralGoogle Scholar
  22. Broadley MR, White PJ, Hammond JP, Zelko I, Lux A (2007) Zinc in plants. New Phytol 173(4):677–702.  https://doi.org/10.1111/j.1469-8137.2007.01996.x CrossRefPubMedPubMedCentralGoogle Scholar
  23. Cai H, Huang S, Che J, Yamaji N, Ma JF (2019) The tonoplast-localized transporter OsHMA3 plays an important role in maintaining Zn homeostasis in rice. J Exp Bot 70(10):2717–2725.  https://doi.org/10.1093/jxb/erz091 CrossRefPubMedPubMedCentralGoogle Scholar
  24. Cailliatte R, Lapeyre B, Briat J, Mari S, Curie C (2009) The NRAMP6 metal transporter contributes to cadmium toxicity. Biochem J 422:217–228PubMedCrossRefPubMedCentralGoogle Scholar
  25. Cesco S, Neumann G, Tomasi N, Pinton R, Weisskopf L (2010) Release of plant-borne flavonoids into the rhizosphere and their role in plant nutrition. Plant Soil 329(1-2):1–25CrossRefGoogle Scholar
  26. Chaney RL (1993) Zinc phytotoxicity. In: Robson AD (ed) Zinc in Soils and Plants, vol 55. Developments in plant and soil sciences. Springer, Dordrecht, pp 135–150.  https://doi.org/10.1007/978-94-011-0878-2_10 CrossRefGoogle Scholar
  27. Chaney R (2015) How does contamination of rice soils with cd and zn cause high incidence of human cd disease in subsistence rice farmers. Curr Pollut Rep 1(1):13–22.  https://doi.org/10.1007/s40726-015-0002-4 CrossRefGoogle Scholar
  28. Che J, Yokosho K, Yamaji N, Ma JF (2019) A Vacuolar phytosiderophore transporter alters iron and zinc accumulation in polished rice grains. Plant Physiol 181(1):276–288.  https://doi.org/10.1104/pp.19.00598 CrossRefPubMedPubMedCentralGoogle Scholar
  29. Chen Z, Fujii Y, Yamaji N, Masuda S, Takemoto Y, Kamiya T, Yusuyin Y, Iwasaki K, S-i K, Maeshima M (2013) Mn tolerance in rice is mediated by MTP8.1, a member of the cation diffusion facilitator family. J Exp Bot 64(14):4375–4387PubMedPubMedCentralCrossRefGoogle Scholar
  30. Cheng F, Zhao N, Xu H, Li Y, Zhang W, Zhu Z, Chen M (2006) Cadmium and lead contamination in japonica rice grains and its variation among the different locations in southeast China. Sci Total Environ 359(1):156–166PubMedPubMedCentralGoogle Scholar
  31. Cheng L, Wang F, Shou H, Huang F, Zheng L, He F, Li J, Zhao F-J, Ueno D, Ma JF, Wu P (2007) Mutation in nicotianamine aminotransferase stimulated the Fe(ii) acquisition system and led to iron accumulation in rice. Plant Physiol 145(4):1647–1657.  https://doi.org/10.1104/pp.107.107912 CrossRefPubMedPubMedCentralGoogle Scholar
  32. Clemens S, Aarts MG, Thomine S, Verbruggen N (2013) Plant science: the key to preventing slow cadmium poisoning. Trends Plant Sci 18(2):92–99PubMedCrossRefPubMedCentralGoogle Scholar
  33. Curie C, Panaviene Z, Loulergue C, Dellaporta SL, Briat J-F, Walker EL (2001) Maize yellow stripe1 encodes a membrane protein directly involved in Fe (III) uptake. Nature 409(6818):346–349PubMedCrossRefPubMedCentralGoogle Scholar
  34. Deng F, Yamaji N, Xia J, Ma JF (2013) A member of the heavy metal P-Type ATPase OsHMA5 is involved in xylem loading of copper in rice. Plant Physiol 163(3):1353–1362.  https://doi.org/10.1104/pp.113.226225 CrossRefPubMedPubMedCentralGoogle Scholar
  35. Durrett TP, Gassmann W, Rogers EE (2007) The FRD3-mediated efflux of citrate into the root vasculature is necessary for efficient iron translocation. Plant Physiol 144(1):197–205PubMedPubMedCentralCrossRefGoogle Scholar
  36. Fageria NK, Santos AB, Barbosa Filho MP, Guimarães CM (2008) Iron toxicity in lowland rice. J Plant Nutr 31(9):1676–1697.  https://doi.org/10.1080/01904160802244902 CrossRefGoogle Scholar
  37. Feng SJ, Liu XS, Tao H, Tan SK, Chu SS, Oono Y, Zhang XD, Chen J, Yang ZM (2016) Variation of DNA methylation patterns associated with gene expression in rice (Oryza sativa) exposed to cadmium. Plant Cell Environ 39(12):2629–2649.  https://doi.org/10.1111/pce.12793 CrossRefPubMedPubMedCentralGoogle Scholar
  38. Fontanili L, Lancilli C, Suzui N, Dendena B, Yin Y-G, Ferri A, Ishii S, Kawachi N, Lucchini G, Fujimaki S, Sacchi GA, Nocito FF (2016) Kinetic analysis of zinc/cadmium reciprocal competitions sggests a possible Zn-insensitive pathway for root-to-shoot cadmium translocation in rice. Rice 9(1):16.  https://doi.org/10.1186/s12284-016-0088-3 CrossRefPubMedPubMedCentralGoogle Scholar
  39. Fujimaki S, Suzui N, Ishioka NS, Kawachi N, Ito S, Chino M, S-i N (2010) Tracing cadmium from culture to spikelet: noninvasive imaging and quantitative characterization of absorption, transport, and accumulation of cadmium in an intact rice plant. Plant Physiol 152(4):1796–1806.  https://doi.org/10.1104/pp.109.151035 CrossRefPubMedPubMedCentralGoogle Scholar
  40. Grillet L, Ouerdane L, Flis P, Hoang MTT, Isaure M-P, Lobinski R, Curie C, Mari S (2014) Ascorbate efflux as a new strategy for iron reduction and transport in plants. J Biol Chem 289(5):2515–2525.  https://doi.org/10.1074/jbc.M113.514828 CrossRefPubMedPubMedCentralGoogle Scholar
  41. Grillet L, Lan P, Li W, Mokkapati G, Schmidt W (2018) IRON MAN is a ubiquitous family of peptides that control iron transport in plants. Nature Plants 4(11):953–963.  https://doi.org/10.1038/s41477-018-0266-y CrossRefPubMedPubMedCentralGoogle Scholar
  42. Grotz N, Guerinot ML (2006) Molecular aspects of Cu, Fe and Zn homeostasis in plants. Biochim Biophys Acta (BBA) Mol Cell Res 1763(7):595–608.  https://doi.org/10.1016/j.bbamcr.2006.05.014 CrossRefGoogle Scholar
  43. Guerinot M (2010) Iron. In: Hell R, Mendel R-R (eds) Cell biology of metals & nutrients, vol 17. Plant Cell Monographs, pp 75–94CrossRefGoogle Scholar
  44. Guerinot M, Ying Y (1994) Iron: nutritious, noxious, and not readily available. Plant Physiol 104:815–820PubMedPubMedCentralCrossRefGoogle Scholar
  45. Hell R, Stephan U (2003) Iron uptake, trafficking and homeostasis in plants. Planta 216(4):541–551.  https://doi.org/10.1007/s00425-002-0920-4 CrossRefPubMedPubMedCentralGoogle Scholar
  46. Hentze MW, Muckenthaler MU, Andrews NC (2004) Balancing acts: molecular control of mammalian iron metabolism. Cell 117(3):285–297.  https://doi.org/10.1016/S0092-8674(04)00343-5 CrossRefPubMedPubMedCentralGoogle Scholar
  47. Hickey LT, Hafeez AN, Robinson H, Jackson SA, Leal-Bertioli SCM, Tester M, Gao C, Godwin ID, Hayes BJ, Wulff BBH (2019) Breeding crops to feed 10 billion. Nat Biotechnol 37:744–754.  https://doi.org/10.1038/s41587-019-0152-9 CrossRefPubMedPubMedCentralGoogle Scholar
  48. Hirayama T, Lei GJ, Yamaji N, Nakagawa N, Ma JF (2018) The putative peptide gene FEP1 regulates iron deficiency response in Arabidopsis. Plant Cell Physiol 59(9):1739–1752.  https://doi.org/10.1093/pcp/pcy145 CrossRefGoogle Scholar
  49. Huang X-Y, Deng F, Yamaji N, Pinson SRM, Fujii-Kashino M, Danku J, Douglas A, Guerinot ML, Salt DE, Ma JF (2016) A heavy metal P-type ATPase OsHMA4 prevents copper accumulation in rice grain. Nat Commun 7:12138.  https://doi.org/10.1038/ncomms12138 CrossRefPubMedPubMedCentralGoogle Scholar
  50. Inoue H, Mizuno D, Takahashi M, Nakanishi H, Mori S, Nishizawa NK (2004) A rice FRD3-Like (OsRFDL1) gene is expressed in the cells involved in long-distance transport. Soil Sci Plant Nutr 50:1133–1140CrossRefGoogle Scholar
  51. Inoue H, Kobayashi T, Nozoye T, Takahashi M, Kakei Y, Suzuki K, Nakazono M, Nakanishi H, Mori S, Nishizawa NK (2009) Rice OsYSL15 is an iron-regulated Iron(III)-deoxymugineic acid transporter expressed in the roots and is essential for iron uptake in early growth of the seedlings. J Biol Chem 284(6):3470–3479.  https://doi.org/10.1074/jbc.M806042200 CrossRefPubMedPubMedCentralGoogle Scholar
  52. Ishikawa S, Suzui N, Ito-Tanabata S, Ishii S, Igura M, Abe T, Kuramata M, Kawachi N, Fujimaki S (2011) Real-time imaging and analysis of differences in cadmium dynamics in rice cultivars (Oryza sativa) using positron-emitting 107Cd tracer. BMC Plant Biol 11:172PubMedPubMedCentralCrossRefGoogle Scholar
  53. Ishikawa S, Ishimaru Y, Igura M, Kuramata M, Abe T, Senoura T, Hase Y, Arao T, Nishizawa NK, Nakanishi H (2012) Ion-beam irradiation, gene identification, and marker-assisted breeding in the development of low-cadmium rice. Proc Natl Acad Sci 109(47):19166–19171.  https://doi.org/10.1073/pnas.1211132109 CrossRefPubMedPubMedCentralGoogle Scholar
  54. Ishimaru Y, Suzuki M, Kobayashi T, Takahashi M, Nakanishi H, Mori S, Nishizawa NK (2005) OsZIP4, a novel zinc-regulated zinc transporter in rice. J Exp Bot 56(422):3207–3214.  https://doi.org/10.1093/jxb/eri317 CrossRefPubMedPubMedCentralGoogle Scholar
  55. Ishimaru Y, Suzuki M, Tsukamoto T, Suzuki K, Nakazono M, Kobayashi T, Wada Y, Watanabe S, Matsuhashi S, Takahashi M, Nakanishi H, Mori S, Nishizawa NK (2006) Rice plants take up iron as an Fe3+-phytosiderophore and as Fe2+. Plant J 45(3):335–346.  https://doi.org/10.1111/j.1365-313X.2005.02624.x CrossRefPubMedPubMedCentralGoogle Scholar
  56. Ishimaru Y, Kim S, Tsukamoto T, Oki H, Kobayashi T, Watanabe S, Matsuhashi S, Takahashi M, Nakanishi H, Mori S, Nishizawa NK (2007a) Mutational reconstructed ferric chelate reductase confers enhanced tolerance in rice to iron deficiency in calcareous soil. Proc Natl Acad Sci 104(18):7373–7378.  https://doi.org/10.1073/pnas.0610555104 CrossRefPubMedPubMedCentralGoogle Scholar
  57. Ishimaru Y, Masuda H, Suzuki M, Bashir K, Takahashi M, Nakanishi H, Mori S, Nishizawa NK (2007b) Overexpression of the OsZIP4 zinc transporter confers disarrangement of zinc distribution in rice plants. J Exp Bot 58(11):2909–2915.  https://doi.org/10.1093/jxb/erm147 CrossRefPubMedPubMedCentralGoogle Scholar
  58. Ishimaru Y, Masuda H, Bashir K, Inoue H, Tsukamoto T, Takahashi M, Nakanishi H, Aoki N, Hirose T, Ohsugi R, Nishizawa NK (2010) Rice metal-nicotianamine transporter, OsYSL2, is required for the long-distance transport of iron and manganese. Plant J 62(3):379–390.  https://doi.org/10.1111/j.1365-313X.2010.04158.x CrossRefPubMedPubMedCentralGoogle Scholar
  59. Ishimaru Y, Bashir K, Nakanishi H, Nishizawa NK (2011a) The role of rice phenolics efflux transporter in solubilizing apoplasmic iron. Plant Signal Behav 6(10):1624–1626PubMedCrossRefPubMedCentralGoogle Scholar
  60. Ishimaru Y, Bashir K, Nishizawa NK (2011b) Zn uptake and translocation in rice plants. Rice 4(1):21–27.  https://doi.org/10.1007/s12284-011-9061-3 CrossRefGoogle Scholar
  61. Ishimaru Y, Kakei Y, Shimo H, Bashir K, Sato Y, Sato Y, Uozumi N, Nakanishi H, Nishizawa NK (2011c) A rice phenolic efflux transporter is essential for solubilizing precipitated apoplasmic iron in the plant stele. J Biol Chem 286(28):24649–24655.  https://doi.org/10.1074/jbc.M111.221168 CrossRefPubMedPubMedCentralGoogle Scholar
  62. Ishimaru Y, Bashir K, Nakanishi H, Nishizawa NK (2012) OsNRAMP5, a major player for constitutive iron and manganese uptake in rice. Plant Signal Behav 7(7):763–766.  https://doi.org/10.4161/psb.20510 CrossRefPubMedPubMedCentralGoogle Scholar
  63. Jin CW, You GY, He YF, Tang C, Wu P, Zheng SJ (2007) Iron deficiency-induced secretion of phenolics facilitates the reutilization of root apoplastic iron in red clover. Plant Physiol 144(1):278–285.  https://doi.org/10.1104/pp.107.095794 CrossRefPubMedPubMedCentralGoogle Scholar
  64. Kakei Y, Yamaguchi I, Kobayashi T, Takahashi M, Nakanishi H, Yamakawa T, Nishizawa NK (2009) A highly sensitive, quick and simple quantification method for nicotianamine and 2′-deoxymugineic acid from minimum samples using LC/ESI-TOF-MS achieves functional analysis of these components in plants. Plant Cell Physiol 50(11):1988–1993.  https://doi.org/10.1093/pcp/pcp141 CrossRefPubMedPubMedCentralGoogle Scholar
  65. Kakei Y, Ishimaru Y, Kobayashi T, Yamakawa T, Nakanishi H, Nishizawa NK (2012) OsYSL16 plays a role in the allocation of iron. Plant Mol Biol 79(6):583–594.  https://doi.org/10.1007/s11103-012-9930-1 CrossRefPubMedPubMedCentralGoogle Scholar
  66. Kamiya T, Akahori T, Maeshima M (2005) Expression profile of the genes for rice cation/H+ exchanger family and functional analysis in yeast. Plant Cell Physiol 46(10):1735–1740.  https://doi.org/10.1093/pcp/pci173 CrossRefPubMedPubMedCentralGoogle Scholar
  67. Kato T, Kumazaki K, Wada M, Taniguchi R, Nakane T, Yamashita K, Hirata K, Ishitani R, Ito K, Nishizawa T, Nureki O (2019) Crystal structure of plant vacuolar iron transporter VIT1. Nat Plants 5(3):308–315.  https://doi.org/10.1038/s41477-019-0367-2 CrossRefPubMedPubMedCentralGoogle Scholar
  68. Kim SA, Punshon T, Lanzirotti A, Li L, Alonso JM, Ecker JR, Kaplan J, Guerinot ML (2006) Localization of iron in Arabidopsis seed requires the vacuolar membrane transporter VIT1. Science 314(5803):1295–1298.  https://doi.org/10.1126/science.1132563 CrossRefPubMedPubMedCentralGoogle Scholar
  69. Kobayashi J (1978) Pollution by cadmium and the itai-itai disease in Japan. In: Oeheme FW (ed) Toxicity of heavy metals in the environment. Marcel Dekker, New York, pp 199–260Google Scholar
  70. Kobayashi T (2019) Understanding the complexity of iron sensing and signaling cascades in plants. Plant Cell Physiol.  https://doi.org/10.1093/pcp/pcz038 PubMedCrossRefPubMedCentralGoogle Scholar
  71. Kobayashi T, Nishizawa NK (2012) Iron uptake, translocation, and regulation in higher plants. Annu Rev Plant Biol 63(1):131–152.  https://doi.org/10.1146/annurev-arplant-042811-105522 CrossRefPubMedPubMedCentralGoogle Scholar
  72. Kobayashi T, Nakanishi Itai R, Nishizawa N (2014) Iron deficiency responses in rice roots. Rice 7(1):27.  https://doi.org/10.1186/s12284-014-0027-0 CrossRefPubMedPubMedCentralGoogle Scholar
  73. Koike S, Inoue H, Mizuno D, Takahashi M, Nakanishi H, Mori S, Nishizawa N (2004) OsYSL2 is a rice metal-nicotianamine transporter that is regulated by iron and expressed in the phloem. Plant J 39(3):415–424PubMedCrossRefPubMedCentralGoogle Scholar
  74. Lanquar V, Lelièvre F, Barbier-Brygoo H, Thomine S (2004) Regulation and function of AtNRAMP4 metal transporter protein. Soil Sci Plant Nutr 50(7):1141–1150CrossRefGoogle Scholar
  75. Lee S, An G (2009) Over-expression of OsIRT1 leads to increased iron and zinc accumulations in rice. Plant Cell Environ 32(4):408–416.  https://doi.org/10.1111/j.1365-3040.2009.01935.x CrossRefPubMedPubMedCentralGoogle Scholar
  76. Lee S, Kim Y-Y, Lee Y, An G (2007) Rice P1B-type heavy-metal ATPase, OsHMA9, is a metal efflux protein. Plant Physiol 145(3):831–842.  https://doi.org/10.1104/pp.107.102236 CrossRefPubMedPubMedCentralGoogle Scholar
  77. Lee S, Chiecko JC, Kim SA, Walker EL, Lee Y, Guerinot ML, An G (2009) Disruption of OsYSL15 leads to iron inefficiency in rice plants. Plant Physiol 150(2):786–800.  https://doi.org/10.1104/pp.109.135418 CrossRefPubMedPubMedCentralGoogle Scholar
  78. Lee S, Jeong H, Kim S, Lee J, Guerinot M, An G (2010a) OsZIP5 is a plasma membrane zinc transporter in rice. Plant Mol Biol 73(4):507–517.  https://doi.org/10.1007/s11103-010-9637-0 CrossRefPubMedPubMedCentralGoogle Scholar
  79. Lee S, Kim S, Lee J, Guerinot M, An G (2010b) Zinc deficiency-inducible OsZIP8 encodes a plasma membrane-localized zinc transporter in rice. Mol Cell 29(6):551–558.  https://doi.org/10.1007/s10059-010-0069-0 CrossRefGoogle Scholar
  80. Lee S, Ryoo N, Jeon J-S, Guerinot M, An G (2012) Activation of rice Yellow Stripe1-Like 16 (OsYSL16) enhances iron efficiency. Mol Cell 33(2):117–126.  https://doi.org/10.1007/s10059-012-2165-9 CrossRefGoogle Scholar
  81. Lei GJ, Zhu XF, Wang ZW, Dong F, Dong NY, Zheng SJ (2014) Abscisic acid alleviates iron deficiency by promoting root iron reutilization and transport from root to shoot in Arabidopsis. Plant Cell Environ 37(4):852–863PubMedCrossRefPubMedCentralGoogle Scholar
  82. Liu XS, Feng SJ, Zhang BQ, Wang MQ, Cao HW, Rono JK, Chen X, Yang ZM (2019) OsZIP1 functions as a metal efflux transporter limiting excess zinc, copper and cadmium accumulation in rice. BMC Plant Biol 19(1):283.  https://doi.org/10.1186/s12870-019-1899-3 CrossRefPubMedPubMedCentralGoogle Scholar
  83. Lopez A, Cacoub P, Macdougall IC, Peyrin-Biroulet L (2016) Iron deficiency anaemia. Lancet 387(10021):907–916PubMedCrossRefPubMedCentralGoogle Scholar
  84. Ludwig Y, Slamet-Loedin IH (2019) Genetic biofortification to enrich rice and wheat grain iron: from genes to product. Front Plant Sci 10(833).  https://doi.org/10.3389/fpls.2019.00833
  85. Luo J-S, Huang J, Zeng D-L, Peng J-S, Zhang G-B, Ma H-L, Guan Y, Yi H-Y, Fu Y-L, Han B (2018) A defensin-like protein drives cadmium efflux and allocation in rice. Nat Commun 9(1):645PubMedPubMedCentralCrossRefGoogle Scholar
  86. Marschner H (1995) Mineral nutrition of higher plants, 2nd edn. Academic, LondonGoogle Scholar
  87. Marschner H, Römheld V (1994) Strategies of plants for acquisition of iron. Plant Soil 165(2):261–274.  https://doi.org/10.1007/bf00008069 CrossRefGoogle Scholar
  88. Marschner H, Römheld V, Kissel M (1986) Different strategies in higher plants in mobilization and uptake of iron. J Plant Nutr 9(3-7):695–713.  https://doi.org/10.1080/01904168609363475 CrossRefGoogle Scholar
  89. Masuda H, Ishimaru Y, Aung MS, Kobayashi T, Kakei Y, Takahashi M, Higuchi K, Nakanishi H, Nishizawa NK (2012) Iron biofortification in rice by the introduction of multiple genes involved in iron nutrition. Sci Rep 2:543.  https://doi.org/10.1038/srep00543 CrossRefPubMedPubMedCentralGoogle Scholar
  90. Masuda H, Aung M, Nishizawa N (2013) Iron biofortification of rice using different transgenic approaches. Rice 6(1):1–12.  https://doi.org/10.1186/1939-8433-6-40 CrossRefGoogle Scholar
  91. Matsuoka K, Furukawa J, Bidadi H, Asahina M, Yamaguchi S, Satoh S (2013) Gibberellin-induced expression of Fe uptake-related genes in Arabidopsis. Plant Cell Physiol 55(1):87–98.  https://doi.org/10.1093/pcp/pct160 CrossRefPubMedPubMedCentralGoogle Scholar
  92. Molins H, Michelet L, Lanquar V, Agorio A, Giraudat J, Roach T, Krieger-Liszkay A, Thomine S (2013) Mutants impaired in vacuolar metal mobilization identify chloroplasts as a target for cadmium hypersensitivity in Arabidopsis thaliana. Plant Cell Environ 36(4):804–817PubMedCrossRefPubMedCentralGoogle Scholar
  93. Mori S, Nishizawa NK, Hayashi H, Chino M, Yoshimura E, Ishihara J (1991) Why are young rice plants highly susceptible to iron deficiency? Plant Soil 130(1):143–156.  https://doi.org/10.1007/bf00011869 CrossRefGoogle Scholar
  94. Nakanishi H, Ogawa I, Ishimaru Y, Mori S, Nishizawa NK (2006) Iron deficiency enhances cadmium uptake and translocation mediated by the Fe2+ transporters OsIRT1 and OsIRT2 in rice. Soil Sci Plant Nutr 52(4):464–469CrossRefGoogle Scholar
  95. Neue HU, Quijano C, Senadhira D, Setter T (1998) Strategies for dealing with micronutrient disorders and salinity in lowland rice systems. Field Crop Res 56(1–2):139–155.  https://doi.org/10.1016/S0378-4290(97)00125-1 CrossRefGoogle Scholar
  96. Nilson A, Piza J (1998) Food fortification: a tool for fighting hidden hunger. Food Nutr Bull 19(1):49–60CrossRefGoogle Scholar
  97. Nishiyama R, Kato M, Nagata S, Yanagisawa S, Yoneyama T (2012) Identification of Zn-nicotianamine and Fe-2’-deoxymugineic acid in the phloem saps from rice plants (Oryza sativa L.). Plant Cell Physiol 53(2):381–390.  https://doi.org/10.1093/pcp/pcr188 CrossRefPubMedPubMedCentralGoogle Scholar
  98. Nozoye T, Nagasaka S, Kobayashi T, Takahashi M, Sato Y, Sato Y, Uozumi N, Nakanishi H, Nishizawa NK (2011) Phytosiderophore efflux transporters are crucial for iron acquisition in graminaceous plants. J Biol Chem 286(7):5446–5454.  https://doi.org/10.1074/jbc.M110.180026 CrossRefPubMedPubMedCentralGoogle Scholar
  99. Nozoye T, Nagasaka S, Bashir K, Takahashi M, Kobayashi T, Nakanishi H, Nishizawa NK (2014a) Nicotianamine synthase 2 localizes to the vesicles of iron-deficient rice roots, and its mutation in the YXXφ or LL motif causes the disruption of vesicle formation or movement in rice. Plant J 77(2):246–260.  https://doi.org/10.1111/tpj.12383 CrossRefPubMedPubMedCentralGoogle Scholar
  100. Nozoye T, Tsunoda K, Nagasaka S, Bashir K, Takahashi M, Kobayashi T, Nakanishi H, Nishizawa NK (2014b) Rice nicotianamine synthase localizes to particular vesicles for proper function. Plant Signal Behav 9(3):e28660.  https://doi.org/10.4161/psb.28660 CrossRefPubMedPubMedCentralGoogle Scholar
  101. Nozoye T, Nagasaka S, Kobayashi T, Sato Y, Uozumi N, Nakanishi H, Nishizawa NK (2015) The phytosiderophore efflux transporter TOM2 is involved in metal transport in rice. J Biol Chem 290(46):27688–27699.  https://doi.org/10.1074/jbc.M114.635193 CrossRefPubMedPubMedCentralGoogle Scholar
  102. Nozoye T, von Wirén N, Sato Y, Higashiyama T, Nakanishi H, Nishizawa NK (2019) Characterization of the nicotianamine exporter ENA1 in rice. Front Plant Sci 10(502).  https://doi.org/10.3389/fpls.2019.00502
  103. Oomen RJFJ, Wu J, Lelièvre F, Blanchet S, Richaud P, Barbier-Brygoo H, Aarts MGM, Thomine S (2009) Functional characterization of NRAMP3 and NRAMP4 from the metal hyperaccumulator Thlaspi caerulescens. New Phytol 181(3):637–650.  https://doi.org/10.1111/j.1469-8137.2008.02694.x CrossRefPubMedPubMedCentralGoogle Scholar
  104. Palmer CM, Guerinot ML (2009) Facing the challenges of Cu, Fe and Zn homeostasis in plants. Nat Chem Biol 5(5):333–340PubMedPubMedCentralCrossRefGoogle Scholar
  105. Pedas P, Ytting CK, Fuglsang AT, Jahn TP, Schjoerring JK, Husted S (2008) Manganese efficiency in barley: identification and characterization of the metal ion transporter HvIRT1. Plant Physiol 148(1):455–466.  https://doi.org/10.1104/pp.108.118851 CrossRefPubMedPubMedCentralGoogle Scholar
  106. PG K, Kuruvilla S, Mathew MK (2015) Functional characterization of a transition metal ion transporter, OsZIP6 from rice (Oryza sativa L.). Plant Physiol Biochem 97:165–174.  https://doi.org/10.1016/j.plaphy.2015.10.005 CrossRefGoogle Scholar
  107. Podar D, Scherer J, Noordally Z, Herzyk P, Nies D, Sanders D (2012) Metal selectivity determinants in a family of transition metal transporters. J Biol Chem 287(5):3185–3196.  https://doi.org/10.1074/jbc.M111.305649 CrossRefPubMedPubMedCentralGoogle Scholar
  108. Pottier M, Oomen R, Picco C, Giraudat J, Scholz-Starke J, Richaud P, Carpaneto A, Thomine S (2015) Identification of mutations allowing Natural Resistance Associated Macrophage Proteins (NRAMP) to discriminate against cadmium. Plant J 83:625–637.  https://doi.org/10.1111/tpj.12914 CrossRefPubMedPubMedCentralGoogle Scholar
  109. Prasad AS (2009) Impact of the discovery of human zinc deficiency on health. J Am Coll Nutr 28(3):257–265PubMedCrossRefPubMedCentralGoogle Scholar
  110. Rajniak J, Giehl RFH, Chang E, Murgia I, von Wirén N, Sattely ES (2018) Biosynthesis of redox-active metabolites in response to iron deficiency in plants. Nat Chem Biol 14(5):442–450.  https://doi.org/10.1038/s41589-018-0019-2 CrossRefPubMedPubMedCentralGoogle Scholar
  111. Ramesh SA, Shin R, Eide DJ, Schachtman DP (2003) Differential metal selectivity and gene expression of two zinc transporters from rice. Plant Physiol 133(1):126–134PubMedPubMedCentralCrossRefGoogle Scholar
  112. Rasheed S, Bashir K, Matsui A, Tanaka M, Seki M (2016) Transcriptomic analysis of soil-grown Arabidopsis thaliana roots and shoots in response to a drought stress. Front Plant Sci 7:180.  https://doi.org/10.3389/fpls.2016.00180 CrossRefPubMedPubMedCentralGoogle Scholar
  113. Reeves P, Chaney R (2008) Bioavailability as an issue in risk assessment and management of food cadmium: a review. Sci Total Environ 398:13–19PubMedCrossRefPubMedCentralGoogle Scholar
  114. Rellán-Álvarez R, Giner-Martínez-Sierra J, Orduna J, Orera I, Rodríguez-Castrillón JÁ, García-Alonso JI, Abadía J, Álvarez-Fernández A (2010) Identification of a tri-iron (III), tri-citrate complex in the xylem sap of iron-deficient tomato resupplied with iron: new insights into plant iron long-distance transport. Plant Cell Physiol 51(1):91–102PubMedCrossRefPubMedCentralGoogle Scholar
  115. Ricachenevsky FK, Punshon T, Lee S, Oliveira BHN, Trenz TS, Maraschin FS, Hindt MN, Danku J, Salt DE, Fett JP, Guerinot ML (2018) Elemental profiling of rice FOX lines leads to characterization of a new zn plasma membrane transporter, OsZIP7. Front Plant Sci 9(865).  https://doi.org/10.3389/fpls.2018.00865
  116. Roberts LA, Pierson AJ, Panaviene Z, Walker EL (2004) Yellow stripe1. expanded roles for the maize iron-phytosiderophore transporter. Plant Physiol 135(1):112–120.  https://doi.org/10.1104/pp.103.037572 CrossRefPubMedPubMedCentralGoogle Scholar
  117. Rogers EE, Eide DJ, Guerinot ML (2000) Altered selectivity in an Arabidopsis metal transporter. Proc Natl Acad Sci 97(22):12356–12360.  https://doi.org/10.1073/pnas.210214197 CrossRefPubMedPubMedCentralGoogle Scholar
  118. Römheld V, Marschner H (1990) Genotypical differences among graminaceous species in release of phytosiderophores and uptake of iron phytosiderophores. Plant Soil 123(2):147–153.  https://doi.org/10.1007/bf00011260 CrossRefGoogle Scholar
  119. Roschzttardtz H, Séguéla-Arnaud M, Briat J-F, Vert G, Curie C (2011) The FRD3 citrate effluxer promotes iron nutrition between symplastically disconnected tissues throughout Arabidopsis development. Plant Cell 23(7):2725–2737PubMedPubMedCentralCrossRefGoogle Scholar
  120. Rutherford AW, Boussac A (2004) Water photolysis in biology. Science 303(5665):1782–1784.  https://doi.org/10.1126/science.1096767 CrossRefPubMedPubMedCentralGoogle Scholar
  121. Sasaki A, Yamaji N, Xia J, Ma JF (2011) OsYSL6 is involved in the detoxification of excess manganese in rice. Plant Physiol 157(4):1832–1840.  https://doi.org/10.1104/pp.111.186031 CrossRefPubMedPubMedCentralGoogle Scholar
  122. Sasaki A, Yamaji N, Yokosho K, Ma JF (2012) Nramp5 is a major transporter responsible for manganese and cadmium uptake in rice. Plant Cell 24(5):2155–2167.  https://doi.org/10.1105/tpc.112.096925 CrossRefPubMedPubMedCentralGoogle Scholar
  123. Sasaki A, Yamaji N, Ma JF (2014) Overexpression of OsHMA3 enhances Cd tolerance and expression of Zn transporter genes in rice. J Exp Bot 65(20):6013–6021PubMedPubMedCentralCrossRefGoogle Scholar
  124. Sasaki A, Yamaji N, Mitani-Ueno N, Kashino M, Ma JF (2015) A node-localized transporter OsZIP3 is responsible for the preferential distribution of Zn to developing tissues in rice. Plant J 84(2):374–384.  https://doi.org/10.1111/tpj.13005 CrossRefPubMedPubMedCentralGoogle Scholar
  125. Schroeder JI, Delhaize E, Frommer WB, Guerinot ML, Harrison MJ, Herrera-Estrella L, Horie T, Kochian LV, Munns R, Nishizawa NK, Tsay Y-F, Sanders D (2013) Using membrane transporters to improve crops for sustainable food production. Nature 497(7447):60–66.  https://doi.org/10.1038/nature11909 CrossRefPubMedPubMedCentralGoogle Scholar
  126. Senoura T, Sakashita E, Kobayashi T, Takahashi M, Aung MS, Masuda H, Nakanishi H, Nishizawa NK (2017) The iron-chelate transporter OsYSL9 plays a role in iron distribution in developing rice grains. Plant Mol Biol 95(4):375–387.  https://doi.org/10.1007/s11103-017-0656-y CrossRefPubMedPubMedCentralGoogle Scholar
  127. Shao JF, Yamaji N, Shen RF, Ma JF (2017) The key to Mn homeostasis in plants: regulation of Mn transporters. Trends Plant Sci 22(3):215–224.  https://doi.org/10.1016/j.tplants.2016.12.005 CrossRefPubMedPubMedCentralGoogle Scholar
  128. Shao JF, Xia J, Yamaji N, Shen RF, Ma JF (2018) Effective reduction of cadmium accumulation in rice grain by expressing OsHMA3 under the control of the OsHMA2 promoter. J Exp Bot 69(10):2743–2752.  https://doi.org/10.1093/jxb/ery107 CrossRefPubMedPubMedCentralGoogle Scholar
  129. Shojima S, Nishizawa NK, Mori S (1989) Establishment of a cell-free system for the biosynthesis of nicotianamine. Plant Cell Physiol 30(5):673–677.  https://doi.org/10.1093/oxfordjournals.pcp.a077792 CrossRefGoogle Scholar
  130. Socha AL, Guerinot ML (2014) Mn-euvering manganese: the role of transporter gene family members in manganese uptake and mobilization in plants. Front Plant Sci 5:106.  https://doi.org/10.3389/fpls.2014.00106 CrossRefPubMedPubMedCentralGoogle Scholar
  131. Stoltzfus RJ (2003) Iron deficiency: global prevalence and consequences. Food Nutr Bull 24(Supplement 2):99–103CrossRefGoogle Scholar
  132. Suzuki M, Takahashi M, Tsukamoto T, Watanabe S, Matsuhashi S, Yazaki J, Kishimoto N, Kikuchi S, Nakanishi H, Mori S, Nishizawa NK (2006) Biosynthesis and secretion of mugineic acid family phytosiderophores in zinc-deficient barley. Plant J 48(1):85–97.  https://doi.org/10.1111/j.1365-313X.2006.02853.x CrossRefPubMedPubMedCentralGoogle Scholar
  133. Suzuki M, Tsukamoto T, Inoue H, Watanabe S, Matsuhashi S, Takahashi M, Nakanishi H, Mori S, Nishizawa NK (2008) Deoxymugineic acid increases Zn translocation in Zn-deficient rice plants. Plant Mol Biol 66(6):609–617.  https://doi.org/10.1007/s11103-008-9292-x CrossRefPubMedPubMedCentralGoogle Scholar
  134. Suzuki M, Bashir K, Inoue H, Takahashi M, Nakanishi H, Nishizawa N (2012) Accumulation of starch in Zn-deficient rice. Rice 5(1):9PubMedPubMedCentralCrossRefGoogle Scholar
  135. Suzuki M, Nozoye T, Nagasaka S, Nakanishi H, Nishizawa NK, Mori S (2016) The detection of endogenous 2’-deoxymugineic acid in olives (Olea europaea L.) indicates the biosynthesis of mugineic acid family phytosiderophores in non-graminaceous plants. Soil Sci Plant Nutr 62(5-6):481–488.  https://doi.org/10.1080/00380768.2016.1230724 CrossRefGoogle Scholar
  136. Takahashi M, Terada Y, Nakai I, Nakanishi H, Yoshimura E, Mori S, Nishizawa NK (2003) Role of nicotianamine in the intracellular delivery of metals and plant reproductive development. Plant Cell 15(6):1263–1280.  https://doi.org/10.1105/tpc.010256 CrossRefPubMedPubMedCentralGoogle Scholar
  137. Takahashi R, Ishimaru Y, Senoura T, Shimo H, Ishikawa S, Arao T, Nakanishi H, Nishizawa NK (2011) The OsNRAMP1 iron transporter is involved in Cd accumulation in rice. J Exp Bot 62(14):4843–4850.  https://doi.org/10.1093/jxb/err136 CrossRefPubMedPubMedCentralGoogle Scholar
  138. Takahashi R, Bashir K, Ishimaru Y, Nishizawa NK, Nakanishi H (2012a) The role of heavy-metal ATPases, HMAs, in zinc and cadmium transport in rice. Plant Signal Behav 7(12):1605–1607PubMedPubMedCentralCrossRefGoogle Scholar
  139. Takahashi R, Ishimaru Y, Shimo H, Ogo Y, Senoura T, Nishizawa NK, Nakanishi H (2012b) The OsHMA2 transporter is involved in root-to-shoot translocation of Zn and Cd in rice. Plant Cell Environ 35:1948–1957.  https://doi.org/10.1111/j.1365-3040.2012.02527.x CrossRefPubMedPubMedCentralGoogle Scholar
  140. Takahashi R, Ishimaru Y, Shimo H, Bashir K, Senoura T, Sugimoto K, Ono K, Suzui N, Kawachi N, Ishii S, Yin Y-G, Fujimaki S, Yano M, Nishizawa NK, Nakanishi H (2014) From laboratory to field: OsNRAMP5 knockdown rice is a promising candidate for cd phytoremediation in paddy fields. PLoS One 9(6):e98816.  https://doi.org/10.1371/journal.pone.0098816 CrossRefPubMedPubMedCentralGoogle Scholar
  141. Takemoto Y, Tsunemitsu Y, Fujii-Kashino M, Mitani-Ueno N, Yamaji N, Ma JF, S-i K, Iwasaki K, Ueno D (2017) The tonoplast-localized transporter MTP8.2 contributes to manganese detoxification in the shoots and roots of Oryza sativa L. Plant Cell Physiol 58(9):1573–1582.  https://doi.org/10.1093/pcp/pcx082 CrossRefPubMedPubMedCentralGoogle Scholar
  142. Tan L, Zhu Y, Fan T, Peng C, Wang J, Sun L, Chen C (2019) OsZIP7 functions in xylem loading in roots and inter-vascular transfer in nodes to deliver Zn/Cd to grain in rice. Biochem Biophys Res Commun 512(1):112–118.  https://doi.org/10.1016/j.bbrc.2019.03.024 CrossRefPubMedPubMedCentralGoogle Scholar
  143. Tang L, Mao B, Li Y, Lv Q, Zhang L, Chen C, He H, Wang W, Zeng X, Shao Y, Pan Y, Hu Y, Peng Y, Fu X, Li H, Xia S, Zhao B (2017) Knockout of OsNramp5 using the CRISPR/Cas9 system produces low Cd-accumulating indica rice without compromising yield. Sci Rep 7(1):14438.  https://doi.org/10.1038/s41598-017-14832-9 CrossRefPubMedPubMedCentralGoogle Scholar
  144. Thomine S, Wang R, Ward J, Crawford N, Schroeder J (2000) Cadmium and iron transport by members of a plant metal transporter family in Arabidopsis with homology to Nramp genes. Proc Natl Acad Sci 97:4991–4996PubMedCrossRefPubMedCentralGoogle Scholar
  145. Tiong J, McDonald GK, Genc Y, Pedas P, Hayes JE, Toubia J, Langridge P, Huang CY (2014) HvZIP7 mediates zinc accumulation in barley (Hordeum vulgare) at moderately high zinc supply. New Phytol 201(1):131–143.  https://doi.org/10.1111/nph.12468 CrossRefPubMedPubMedCentralGoogle Scholar
  146. Tiong J, McDonald G, Genc Y, Shirley N, Langridge P, Huang CY (2015) Increased expression of six ZIP family genes by zinc (Zn) deficiency is associated with enhanced uptake and root-to-shoot translocation of Zn in barley (Hordeum vulgare). New Phytol 207(4):1097–1109.  https://doi.org/10.1111/nph.13413 CrossRefPubMedPubMedCentralGoogle Scholar
  147. Tsai HH, Schmidt W (2017) Mobilization of iron by plant-borne coumarins. Trends Plant Sci 22(6):538–548.  https://doi.org/10.1016/j.tplants.2017.03.008 CrossRefPubMedPubMedCentralGoogle Scholar
  148. Tsednee M, Yang S-C, Lee D-C, Yeh K-C (2014) Root-secreted nicotianamine from Arabidopsis halleri facilitates zinc hypertolerance by regulating zinc bioavailability. Plant Physiol 166(2):839–852PubMedPubMedCentralCrossRefGoogle Scholar
  149. Tsukamoto T, Nakanishi H, Kiyomiya S, Watanabe S, Matsuhashi S, Nishizawa NK, Mori S (2006) 52Mn translocation in barley monitored using a positron-emitting tracer imaging system. Soil Sci Plant Nutr 52(6):717–725CrossRefGoogle Scholar
  150. Tsukamoto T, Nakanishi H, Uchida H, Watanabe S, Matsuhashi S, Mori S, Nishizawa NK (2009) 52Fe translocation in barley as monitored by a positron-emitting tracer imaging system (petis): evidence for the direct translocation of fe from roots to young leaves via phloem. Plant Cell Physiol 50(1):48–57.  https://doi.org/10.1093/pcp/pcn192 CrossRefPubMedPubMedCentralGoogle Scholar
  151. Tsunemitsu Y, Genga M, Okada T, Yamaji N, Ma JF, Miyazaki A, S-i K, Iwasaki K, Ueno D (2018) A member of cation diffusion facilitator family, MTP11, is required for manganese tolerance and high fertility in rice. Planta 248:231–241PubMedCrossRefPubMedCentralGoogle Scholar
  152. Ueno D, Yamaji N, Kono I, Huang CF, Ando T, Yano M, Ma JF (2010) Gene limiting cadmium accumulation in rice. Proc Natl Acad Sci 107(38):16500–16505.  https://doi.org/10.1073/pnas.1005396107 CrossRefPubMedPubMedCentralGoogle Scholar
  153. Ueno D, Sasaki A, Yamaji N, Miyaji T, Fujii Y, Takemoto Y, Moriyama S, Che J, Moriyama Y, Iwasaki K, Ma JF (2015) A polarly localized transporter for efficient manganese uptake in rice. Nature Plants 1:15170.  https://doi.org/10.1038/nplants.2015.170 CrossRefPubMedPubMedCentralGoogle Scholar
  154. Uraguchi S, Fujiwara T (2012) Cadmium transport and tolerance in rice: perspectives for reducing grain cadmium accumulation. Rice 5(1):5PubMedPubMedCentralCrossRefGoogle Scholar
  155. Uraguchi S, Kamiya T, Sakamoto T, Kasai K, Sato Y, Nagamura Y, Yoshida A, Kyozuka J, Ishikawa S, Fujiwara T (2011) Low-affinity cation transporter (OsLCT1) regulates cadmium transport into rice grains. Proc Natl Acad Sci 108(52):20959–20964.  https://doi.org/10.1073/pnas.1116531109 CrossRefPubMedPubMedCentralGoogle Scholar
  156. Vert G, Grotz N, Dedaldechamp F, Gaymard F, Guerinot M, Briat J, Curie C (2002) IRT1, an Arabidopsis transporter essential for iron uptake from the soil and for plant growth. Plant Cell 14:1223–1233PubMedPubMedCentralCrossRefGoogle Scholar
  157. Vigani G, Zocchi G, Bashir K, Philippar K, Briat J-F (2013) Signals from chloroplasts and mitochondria for iron homeostasis regulation. Trends Plant Sci 18(6):305–311.  https://doi.org/10.1016/j.tplants.2013.01.006 CrossRefPubMedPubMedCentralGoogle Scholar
  158. Vigani G, Bashir K, Ishimaru Y, Lehmann M, Casiraghi M, Nakanishi H, Seki M, Geigenberger P, Zocchi G, Nishizawa N (2016) Knocking down mitochondrial iron transporter (MIT) reprograms primary and secondary metabolism in rice plants. J Exp Bot 67(5):1357–1368.  https://doi.org/10.1093/jxb/erv531 CrossRefPubMedPubMedCentralGoogle Scholar
  159. Welch RM, Graham RD (1999) A new paradigm for world agriculture: meeting human needs: productive, sustainable, nutritious. Field Crop Res 60(1-2):1–10.  https://doi.org/10.1016/s0378-4290(98)00129-4 CrossRefGoogle Scholar
  160. Welch RM, Graham RD (2004) Breeding for micronutrients in staple food crops from a human nutrition perspective. J Exp Bot 55(396):353–364.  https://doi.org/10.1093/jxb/erh064 CrossRefPubMedPubMedCentralGoogle Scholar
  161. Williams D (1983) Copper deficiency in humans. Semin Hematol 20(2):118–128PubMedPubMedCentralGoogle Scholar
  162. World Health Organization (2003) Summary and conclusion of the sixty-first meeting of the Joint FAO/WHO Expert Committee on Food Additives. World Health Organization, GenevaGoogle Scholar
  163. World Health Organization (2009) Micronutrient deficiencies. Iron deficiency anaemiaGoogle Scholar
  164. Xia J, Yamaji N, Kasai T, Ma JF (2010) Plasma membrane-localized transporter for aluminum in rice. Proc Natl Acad Sci 107(43):18381–18385.  https://doi.org/10.1073/pnas.1004949107 CrossRefPubMedPubMedCentralGoogle Scholar
  165. Yamaji N, Ma JF (2014) The node, a hub for mineral nutrient distribution in graminaceous plants. Trends Plant Sci 19(9):556–563.  https://doi.org/10.1016/j.tplants.2014.05.007 CrossRefPubMedPubMedCentralGoogle Scholar
  166. Yamaji N, Sasaki A, Xia JX, Yokosho K, Ma JF (2013a) A node-based switch for preferential distribution of manganese in rice. Nat Commun 4Google Scholar
  167. Yamaji N, Xia XJ, Mitani-Ueno N, Yokosho K, Ma JF (2013b) Preferential delivery of Zn to developing tissues in rice is mediated by a P-type ATPases, OsHMA2. Plant Physiol.  https://doi.org/10.1104/pp.113.216564 PubMedPubMedCentralCrossRefGoogle Scholar
  168. Yang X, Huang J, Jiang Y, Zhang H-S (2009) Cloning and functional identification of two members of the ZIP (Zrt, Irt-like protein) gene family in rice (Oryza sativa L.). Mol Biol Rep 36(2):281–287.  https://doi.org/10.1007/s11033-007-9177-0 CrossRefPubMedPubMedCentralGoogle Scholar
  169. Yang M, Zhang Y, Zhang L, Hu J, Zhang X, Lu K, Dong H, Wang D, Zhao F-J, Huang C-F (2014) OsNRAMP5 contributes to manganese translocation and distribution in rice shoots. J Exp Bot 65(17):4849–4861PubMedPubMedCentralCrossRefGoogle Scholar
  170. Yokosho K, Yamaji N, Ueno D, Mitani N, Ma JF (2009) OsFRDL1 Is a citrate transporter required for efficient translocation of iron in rice. Plant Physiol 149(1):297–305.  https://doi.org/10.1104/pp.108.128132 CrossRefPubMedPubMedCentralGoogle Scholar
  171. Yokosho K, Yamaji N, Ma JF (2016) OsFRDL1 expressed in nodes is required for distribution of iron to grains in rice. J Exp Bot 67(18):5485–5494PubMedPubMedCentralCrossRefGoogle Scholar
  172. Yoneyama T, Gosho T, Kato M, Goto S, Hayashi H (2010) Xylem and phloem transport of Cd, Zn and Fe into the grains of rice plants (Oryza sativa L.) grown in continuously flooded Cd-contaminated soil. Soil Sci Plant Nutr 56(3):445–453.  https://doi.org/10.1111/j.1747-0765.2010.00481.x CrossRefGoogle Scholar
  173. Yoneyama T, Ishikawa S, Fujimaki S (2015) Route and regulation of zinc, cadmium, and iron transport in rice plants (Oryza sativa L.) during vegetative frowth and grain filling: metal transporters, metal speciation, grain Cd reduction and Zn and Fe biofortification. Int J Mol Sci 16(8):19111–19129PubMedPubMedCentralCrossRefGoogle Scholar
  174. Zhai Z, Gayomba SR, H-i J, Vimalakumari NK, Piñeros M, Craft E, Rutzke MA, Danku J, Lahner B, Punshon T, Guerinot ML, Salt DE, Kochian LV, Vatamaniuk OK (2014) OPT3 Is a phloem-specific iron transporter that is essential for systemic iron signaling and redistribution of iron and cadmium in arabidopsis. Plant Cell 26:2249–2264.  https://doi.org/10.1105/tpc.114.123737 CrossRefPubMedPubMedCentralGoogle Scholar
  175. Zhang Y, Xu Y-H, Yi H-Y, Gong J-M (2012) Vacuolar membrane transporters OsVIT1 and OsVIT2 modulate iron translocation between flag leaves and seeds in rice. Plant J 72:400–410.  https://doi.org/10.1111/j.1365-313X.2012.05088.x CrossRefPubMedPubMedCentralGoogle Scholar
  176. Zhang C, Lu W, Yang Y, Shen Z, Ma JF, Zheng L (2018a) OsYSL16 is required for preferential Cu distribution to floral organs in rice. Plant Cell Physiol 59(10):2039–2051.  https://doi.org/10.1093/pcp/pcy124 CrossRefPubMedPubMedCentralGoogle Scholar
  177. Zhang C, Shinwari KI, Luo L, Zheng L (2018b) OsYSL13 is involved in iron distribution in rice. Int J Mol Sci 19(11):3537PubMedCentralCrossRefGoogle Scholar
  178. Zhao F-J, Huang X-Y (2018) Cadmium phytoremediation: call rice CAL1. Mol Plant 11(5):640–642PubMedCrossRefPubMedCentralGoogle Scholar
  179. Zhao M, Song A, Li P, Chen S, Jiang J, Chen F (2014) A bHLH transcription factor regulates iron intake under Fe deficiency in chrysanthemum. Sci Rep 4:6694.  https://doi.org/10.1038/srep06694 CrossRefPubMedPubMedCentralGoogle Scholar
  180. Zheng L, Yamaji N, Yokosho K, Ma JF (2012) YSL16 is a phloem-localized transporter of the copper-nicotianamine complex that is responsible for copper distribution in rice. Plant Cell 24(9):3767–3782PubMedPubMedCentralCrossRefGoogle Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  1. 1.Plant Genomic Network Research TeamCenter for Sustainable Resource ScienceYokohamaJapan
  2. 2.Plant Epigenome Regulation Laboratory, CPRRIKEN WAKOWakoJapan
  3. 3.Kihara Institute for Biological ResearchYokohama City UniversityYokohamaJapan
  4. 4.Graduate School of Agricultural and Life SciencesThe University of TokyoTokyoJapan
  5. 5.Research Institute for Bioresources and BiotechnologyIshikawa Prefectural UniversityNonoichiJapan

Personalised recommendations