Advertisement

Molecular Breeding

, 39:167 | Cite as

Molecular mechanisms underlying plant architecture and its environmental plasticity in rice

  • Hengbin Gao
  • Wenguang Wang
  • Yonghong Wang
  • Yan LiangEmail author
Article
  • 180 Downloads
Part of the following topical collections:
  1. Topical Collection on Rice Functional Genomics

Abstract

Plant architecture, which consists mainly of plant height, tillering, and panicle morphology, contributes greatly to grain yield in rice. Exploring the molecular mechanisms of rice plant architecture will provide theoretical guidance and valuable gene resources for breeding elite rice varieties with ideal plant architecture. In this review, we emphasize recent progress in elucidating the mechanisms that control rice plant architecture, focusing on tiller number, tiller angle, and panicle branching. Environmental factors influence the plasticity of rice plant architecture, and thus we also discuss the roles of environmental factors in regulating rice plant architecture.

Keywords

Plant architecture Tiller number Tiller angle Panicle branching Environment Rice 

Notes

Acknowledgements

We apologize to colleagues whose work is not cited in this review owing to space limitations. This work is supported by grants from the National Natural Science Foundation of China (31601276), the National Key Research and Development Program of China (2016YFD0100403), and the Ministry of Agriculture of China (2016ZX08009-003).

References

  1. Adriani DE, Dingkuhn M, Dardou A, Adam H, Luquet D, Lafarge T (2016) Rice panicle plasticity in near isogenic lines carrying a QTL for larger panicle is genotype and environment dependent. Rice 9(1):28.  https://doi.org/10.1186/s12284-016-0101-x CrossRefPubMedPubMedCentralGoogle Scholar
  2. Aguilar-Martinez JA, Poza-Carrion C, Cubas P (2007) Arabidopsis BRANCHED1 acts as an integrator of branching signals within axillary buds. Plant Cell 19(2):458–472.  https://doi.org/10.1105/tpc.106.048934 CrossRefPubMedPubMedCentralGoogle Scholar
  3. Alam MM, Tanaka T, Nakamura H, Ichikawa H, Kobayashi K, Yaeno T, Yamaoka N, Shimomoto K, Takayama K, Nishina H, Nishiguchi M (2015) Overexpression of a rice heme activator protein gene (OsHAP2E) confers resistance to pathogens, salinity and drought, and increases photosynthesis and tiller number. Plant Biotechnol J 13(1):85–96.  https://doi.org/10.1111/pbi.12239 CrossRefPubMedGoogle Scholar
  4. Alder A, Jamil M, Marzorati M, Bruno M, Vermathen M, Bigler P, Ghisla S, Bouwmeester H, Beyer P, Al-Babili S (2012) The path from β-carotene to carlactone, a strigolactone-like plant hormone. Science 335(6074):1348–1351.  https://doi.org/10.1126/science.1218094 CrossRefPubMedGoogle Scholar
  5. Anacleto R, Badoni S, Parween S, Butardo VM Jr, Misra G, Cuevas RP, Kuhlmann M, Trinidad TP, Mallillin AC, Acuin C, Bird AR, Morell MK, Sreenivasulu N (2019) Integrating a genome-wide association study with a large-scale transcriptome analysis to predict genetic regions influencing the glycaemic index and texture in rice. Plant Biotechnol J 17(7):1261–1275.  https://doi.org/10.1111/pbi.13051 CrossRefPubMedPubMedCentralGoogle Scholar
  6. Arite T, Iwata H, Ohshima K, Maekawa M, Nakajima M, Kojima M, Sakakibara H, Kyozuka J (2007) DWARF10, an RMS1/MAX4/DAD1 ortholog, controls lateral bud outgrowth in rice. Plant J 51(6):1019–1029.  https://doi.org/10.1111/j.1365-313X.2007.03210.x CrossRefPubMedGoogle Scholar
  7. Arite T, Umehara M, Ishikawa S, Hanada A, Maekawa M, Yamaguchi S, Kyozuka J (2009) d14, a strigolactone-insensitive mutant of rice, shows an accelerated outgrowth of tillers. Plant Cell Physiol 50(8):1416–1424.  https://doi.org/10.1093/pcp/pcp091 CrossRefPubMedGoogle Scholar
  8. Ashikari M, Sakakibara H, Lin S, Yamamoto T, Takashi T, Nishimura A, Angeles ER, Qian Q, Kitano H, Matsuoka M (2005) Cytokinin oxidase regulates rice grain production. Science 309(5735):741–745.  https://doi.org/10.1126/science.1113373 CrossRefPubMedGoogle Scholar
  9. Bai X, Huang Y, Mao D, Wen M, Zhang L, Xing Y (2016) Regulatory role of FZP in the determination of panicle branching and spikelet formation in rice. Sci Rep 6:19022.  https://doi.org/10.1038/srep19022 CrossRefPubMedPubMedCentralGoogle Scholar
  10. Bai X, Huang Y, Hu Y, Liu H, Zhang B, Smaczniak C, Hu G, Han Z, Xing Y (2017) Duplication of an upstream silencer of FZP increases grain yield in rice. Nat Plants 3(11):885–893.  https://doi.org/10.1038/s41477-017-0042-4 CrossRefPubMedGoogle Scholar
  11. Ballaré CL, Scopel AL, Sánchez RA (1990) Far-red radiation reflected from adjacent leaves: an early signal of competition in plant canopies. Science 247(4940):329–332.  https://doi.org/10.1126/science.247.4940.329 CrossRefPubMedGoogle Scholar
  12. Braun N, de Saint GA, Pillot JP, Boutet-Mercey S, Dalmais M, Antoniadi I, Li X, Maia-Grondard A, Le Signor C, Bouteiller N, Luo D, Bendahmane A, Turnbull C, Rameau C (2012) The pea TCP transcription factor PsBRC1 acts downstream of strigolactones to control shoot branching. Plant Physiol 158(1):225–238.  https://doi.org/10.1104/pp.111.182725 CrossRefPubMedGoogle Scholar
  13. Cardoso C, Zhang YX, Jamil M, Hepworth J, Charnikhova T, Dimkpa SON, Meharg C, Wright MH, Liu JW, Meng XB, Wang YH, Li JY, McCouch SR, Leyser O, Price AH, Bouwmeester HJ, Ruyter-Spira C (2014) Natural variation of rice strigolactone biosynthesis is associated with the deletion of two MAX1 orthologs. Proc Natl Acad Sci U S A 111(6):2379–2384.  https://doi.org/10.1073/pnas.1317360111 CrossRefPubMedPubMedCentralGoogle Scholar
  14. Chen L, Zhao Y, Xu S, Zhang Z, Xu Y, Zhang J, Chong K (2018) OsMADS57 together with OsTB1 coordinates transcription of its target OsWRKY94 and D14 to switch its organogenesis to defense for cold adaptation in rice. New Phytol 218(1):219–231.  https://doi.org/10.1111/nph.14977 CrossRefPubMedPubMedCentralGoogle Scholar
  15. Dardick C, Callahan A, Horn R, Ruiz KB, Zhebentyayeva T, Hollender C, Whitaker M, Abbott A, Scorza R (2013) PpeTAC1 promotes the horizontal growth of branches in peach trees and is a member of a functionally conserved gene family found in diverse plants species. Plant J 75(4):618–630.  https://doi.org/10.1111/tpj.12234 CrossRefPubMedGoogle Scholar
  16. Dong H, Zhao H, Xie W, Han Z, Li G, Yao W, Bai X, Hu Y, Guo Z, Lu K, Yang L, Xing Y (2016) A novel tiller angle gene, TAC3, together with TAC1 and D2 largely determine the natural variation of tiller angle in rice cultivars. PLoS Genet 12(11):e1006412.  https://doi.org/10.1371/journal.pgen.1006412 CrossRefPubMedPubMedCentralGoogle Scholar
  17. Du H, Huang F, Wu N, Li X, Hu H, Xiong L (2018) Integrative regulation of drought escape through ABA-dependent and -independent pathways in rice. Mol Plant 11(4):584–597.  https://doi.org/10.1016/j.molp.2018.01.004 CrossRefPubMedGoogle Scholar
  18. Dun EA, de Saint GA, Rameau C, Beveridge CA (2012) Antagonistic action of strigolactone and cytokinin in bud outgrowth control. Plant Physiol 158(1):487–498.  https://doi.org/10.1104/pp.111.186783 CrossRefPubMedGoogle Scholar
  19. Fang Z, Bai G, Huang W, Wang Z, Wang X, Zhang M (2017) The rice peptide transporter OsNPF7.3 is induced by organic nitrogen, and contributes to nitrogen allocation and grain yield. Front Plant Sci 8:1338.  https://doi.org/10.3389/fpls.2017.01338 CrossRefPubMedPubMedCentralGoogle Scholar
  20. Gao Z, Qian Q, Liu X, Yan M, Feng Q, Dong G, Liu J, Han B (2009) Dwarf 88, a novel putative esterase gene affecting architecture of rice plant. Plant Mol Biol 71(3):265–276.  https://doi.org/10.1007/s11103-009-9522-x CrossRefPubMedGoogle Scholar
  21. Gomez-Roldan V, Fermas S, Brewer PB, Puech-Pagès V, Dun EA, Pillot JP, Letisse F, Matusova R, Danoun S, Portais JC, Bouwmeester H, Bécard G, Beveridge CA, Rameau C, Rochange SF (2008) Strigolactone inhibition of shoot branching. Nature 455(7210):189–194.  https://doi.org/10.1038/nature07271 CrossRefPubMedGoogle Scholar
  22. Guo S, Xu Y, Liu H, Mao Z, Zhang C, Ma Y, Zhang Q, Meng Z, Chong K (2013) The interaction between OsMADS57 and OsTB1 modulates rice tillering via DWARF14. Nat Commun 4:1566.  https://doi.org/10.1038/ncomms2542 CrossRefPubMedPubMedCentralGoogle Scholar
  23. Harmoko R, Yoo JY, Ko KS, Ramasamy NK, Hwang BY, Lee EJ, Kim HS, Lee KJ, Oh DB, Kim DY, Lee S, Li Y, Lee SY, Lee KO (2016) N-glycan containing a core α1,3-fucose residue is required for basipetal auxin transport and gravitropic response in rice (Oryza sativa). New Phytol 212(1):108–122.  https://doi.org/10.1111/nph.14031 CrossRefPubMedGoogle Scholar
  24. Hashiguchi Y, Tasaka M, Morita MT (2013) Mechanism of higher plant gravity sensing. Am J Bot 100(1):91–100.  https://doi.org/10.3732/ajb.1200315 CrossRefPubMedGoogle Scholar
  25. Hu B, Wang W, Ou S, Tang J, Li H, Che R, Zhang Z, Chai X, Wang H, Wang Y, Liang C, Liu L, Piao Z, Deng Q, Deng K, Xu C, Liang Y, Zhang L, Li L, Chu C (2015) Variation in NRT1.1B contributes to nitrate-use divergence between rice subspecies. Nat Genet 47(7):834–838.  https://doi.org/10.1038/ng.3337 CrossRefPubMedGoogle Scholar
  26. Hu M, Lv S, Wu W, Fu Y, Liu F, Wang B, Li W, Gu P, Cai H, Sun C, Zhu Z (2018) The domestication of plant architecture in African rice. Plant J 94(4):661–669.  https://doi.org/10.1111/tpj.13887 CrossRefPubMedGoogle Scholar
  27. Huang X, Qian Q, Liu Z, Sun H, He S, Luo D, Xia G, Chu C, Li J, Fu X (2009) Natural variation at the DEP1 locus enhances grain yield in rice. Nat Genet 41(4):494–497.  https://doi.org/10.1038/ng.352 CrossRefPubMedGoogle Scholar
  28. Huang W, Bai G, Wang J, Zhu W, Zeng Q, Lu K, Sun S, Fang Z (2018a) Two splicing variants of OsNPF7.7 regulate shoot branching and nitrogen utilization efficiency in rice. Front Plant Sci 9:300.  https://doi.org/10.3389/fpls.2018.00300 CrossRefPubMedPubMedCentralGoogle Scholar
  29. Huang Y, Bai X, Luo M, Xing Y (2018b) Short Panicle 3 controls panicle architecture by upregulating APO2/RFL and increasing cytokinin content in rice. J Integr Plant Biol.  https://doi.org/10.1111/jipb.12729 CrossRefGoogle Scholar
  30. Huang Y, Zhao S, Fu Y, Sun H, Ma X, Tan L, Liu F, Sun X, Sun H, Gu P, Xie D, Sun C, Zhu Z (2018c) Variation in the regulatory region of FZP causes increases in secondary inflorescence branching and grain yield in rice domestication. Plant J 96(4):716–733.  https://doi.org/10.1111/tpj.14062 CrossRefPubMedGoogle Scholar
  31. Huo X, Wu S, Zhu Z, Liu F, Fu Y, Cai H, Sun X, Gu P, Xie D, Tan L, Sun C (2017) NOG1 increases grain production in rice. Nat Commun 8(1):1497.  https://doi.org/10.1038/s41467-017-01501-8 CrossRefPubMedPubMedCentralGoogle Scholar
  32. Ishikawa S, Maekawa M, Arite T, Onishi K, Takamure I, Kyozuka J (2005) Suppression of tiller bud activity in tillering dwarf mutants of rice. Plant Cell Physiol 46(1):79–86.  https://doi.org/10.1093/pcp/pci022 CrossRefPubMedGoogle Scholar
  33. Jiang L, Liu X, Xiong G, Liu H, Chen F, Wang L, Meng X, Liu G, Yu H, Yuan Y, Yi W, Zhao L, Ma H, He Y, Wu Z, Melcher K, Qian Q, Xu HE, Wang Y, Li J (2013) DWARF 53 acts as a repressor of strigolactone signalling in rice. Nature 504(7480):401–405.  https://doi.org/10.1038/nature12870 CrossRefPubMedPubMedCentralGoogle Scholar
  34. Jiang P, Wang S, Jiang H, Cheng B, Wu K, Ding Y (2018) The COMPASS-like complex promotes flowering and panicle branching in rice. Plant Physiol 176(4):2761–2771.  https://doi.org/10.1104/pp.17.01749 CrossRefPubMedPubMedCentralGoogle Scholar
  35. Jiao Y, Wang Y, Xue D, Wang J, Yan M, Liu G, Dong G, Zeng D, Lu Z, Zhu X, Qian Q, Li J (2010) Regulation of OsSPL14 by OsmiR156 defines ideal plant architecture in rice. Nat Genet 42(6):541–544.  https://doi.org/10.1038/ng.591 CrossRefPubMedGoogle Scholar
  36. Jin J, Huang W, Gao JP, Yang J, Shi M, Zhu MZ, Luo D, Lin HX (2008) Genetic control of rice plant architecture under domestication. Nat Genet 40(11):1365–1369.  https://doi.org/10.1038/ng.247 CrossRefPubMedGoogle Scholar
  37. Kebrom TH, Burson BL, Finlayson SA (2006) Phytochrome B represses Teosinte Branched1 expression and induces sorghum axillary bud outgrowth in response to light signals. Plant Physiol 140(3):1109–1117.  https://doi.org/10.1104/pp.105.074856 CrossRefPubMedPubMedCentralGoogle Scholar
  38. Kolesnikov YS, Kretynin SV, Volotovsky ID, Kordyum EL, Ruelland E, Kravets VS (2016) Molecular mechanisms of gravity perception and signal transduction in plants. Protoplasma 253(4):987–1004.  https://doi.org/10.1007/s00709-015-0859-5 CrossRefPubMedGoogle Scholar
  39. Ku L, Wei X, Zhang S, Zhang J, Guo S, Chen Y (2011) Cloning and characterization of a putative TAC1 ortholog associated with leaf angle in maize (Zea mays L.). PLoS One 6(6):e20621.  https://doi.org/10.1371/journal.pone.0020621 CrossRefPubMedPubMedCentralGoogle Scholar
  40. Kurakawa T, Ueda N, Maekawa M, Kobayashi K, Kojima M, Nagato Y, Sakakibara H, Kyozuka J (2007) Direct control of shoot meristem activity by a cytokinin-activating enzyme. Nature 445(7128):652–655.  https://doi.org/10.1038/nature05504 CrossRefPubMedGoogle Scholar
  41. Li X, Qian Q, Fu Z, Wang Y, Xiong G, Zeng D, Wang X, Liu X, Teng S, Hiroshi F, Yuan M, Luo D, Han B, Li J (2003) Control of tillering in rice. Nature 422(6932):618–621.  https://doi.org/10.1038/nature01518 CrossRefPubMedGoogle Scholar
  42. Li P, Wang Y, Qian Q, Fu Z, Wang M, Zeng D, Li B, Wang X, Li J (2007) LAZY1 controls rice shoot gravitropism through regulating polar auxin transport. Cell Res 17(5):402–410.  https://doi.org/10.1038/cr.2007.38 CrossRefPubMedGoogle Scholar
  43. Li S, Qian Q, Fu Z, Zeng D, Meng X, Kyozuka J, Maekawa M, Zhu X, Zhang J, Li J, Wang Y (2009) Short panicle1 encodes a putative PTR family transporter and determines rice panicle size. Plant J 58(4):592.  https://doi.org/10.1111/j.1365-313x.2009.03799.x CrossRefPubMedGoogle Scholar
  44. Li M, Tang D, Wang K, Wu X, Lu L, Yu H, Gu M, Yan C, Cheng Z (2011) Mutations in the F-box gene LARGER PANICLE improve the panicle architecture and enhance the grain yield in rice. Plant Biotechnol J 9(9):1002–1013.  https://doi.org/10.1111/j.1467-7652.2011.00610.x CrossRefPubMedGoogle Scholar
  45. Li S, Zhao B, Yuan D, Duan M, Qian Q, Tang L, Wang B, Liu X, Zhang J, Wang J, Sun J, Liu Z, Feng YQ, Yuan L, Li C (2013) Rice zinc finger protein DST enhances grain production through controlling Gn1a/OsCKX2 expression. Proc Natl Acad Sci U S A 110(8):3167–3172.  https://doi.org/10.1073/pnas.1300359110 CrossRefPubMedPubMedCentralGoogle Scholar
  46. Li Y, Ouyang J, Wang Y-Y, Hu R, Xia K, Duan J, Wang Y, Tsay Y-F, Zhang M (2015) Disruption of the rice nitrate transporter OsNPF2.2 hinders root-to-shoot nitrate transport and vascular development. Sci Rep 5:9635.  https://doi.org/10.1038/srep09635 CrossRefPubMedPubMedCentralGoogle Scholar
  47. Li Z, Liang Y, Yuan Y, Wang L, Meng X, Xiong G, Zhou J, Cai Y, Han N, Hua L, Liu G, Li J, Wang Y (2019) OsBRXL4 regulates shoot gravitropism and rice tiller angle through affecting LAZY1 nuclear localization. Mol Plant 12(8):1143–1156.  https://doi.org/10.1016/j.molp.2019.05.014 CrossRefPubMedGoogle Scholar
  48. Lin H, Wang R, Qian Q, Yan M, Meng X, Fu Z, Yan C, Jiang B, Su Z, Li J, Wang Y (2009) DWARF27, an iron-containing protein required for the biosynthesis of strigolactones, regulates rice tiller bud outgrowth. Plant Cell 21(5):1512–1525.  https://doi.org/10.1105/tpc.109.065987 CrossRefPubMedPubMedCentralGoogle Scholar
  49. Lin Q, Wang D, Dong H, Gu S, Cheng Z, Gong J, Qin R, Jiang L, Li G, Wang JL, Wu F, Guo X, Zhang X, Lei C, Wang H, Wan J (2012) Rice APC/CTE controls tillering by mediating the degradation of MONOCULM 1. Nat Commun 3:752.  https://doi.org/10.1038/ncomms1716 CrossRefPubMedPubMedCentralGoogle Scholar
  50. Liu W, Wu C, Fu Y, Hu G, Si H, Zhu L, Luan W, He Z, Sun Z (2009) Identification and characterization of HTD2: a novel gene negatively regulating tiller bud outgrowth in rice. Planta 230(4):649–658.  https://doi.org/10.1007/s00425-009-0975-6 CrossRefPubMedGoogle Scholar
  51. Liu M, Shi Z, Zhang X, Wang M, Zhang L, Zheng K, Liu J, Hu X, Di C, Qian Q, He Z, Yang DL (2019) Inducible overexpression of Ideal Plant Architecture1 improves both yield and disease resistance in rice. Nat Plants 5(4):389–400.  https://doi.org/10.1038/s41477-019-0383-2 CrossRefPubMedGoogle Scholar
  52. Lu Z, Yu H, Xiong G, Wang J, Jiao Y, Liu G, Jing Y, Meng X, Hu X, Qian Q, Fu X, Wang Y, Li J (2013) Genome-wide binding analysis of the transcription activator IDEAL PLANT ARCHITECTURE1 reveals a complex network regulating rice plant ARCHITECTURE. Plant Cell 25(10):3743–3759.  https://doi.org/10.1105/tpc.113.113639 CrossRefPubMedPubMedCentralGoogle Scholar
  53. Lu Z, Shao G, Xiong J, Jiao Y, Wang J, Liu G, Meng X, Liang Y, Xiong G, Wang Y, Li J (2015) MONOCULM 3, an ortholog of WUSCHEL in rice, is required for tiller bud formation. J Genet Genomics 42(2):71–78.  https://doi.org/10.1016/j.jgg.2014.12.005 CrossRefPubMedGoogle Scholar
  54. Lu Y, Ye X, Guo R, Huang J, Wang W, Tang J, Tan L, Zhu JK, Chu C, Qian Y (2017) Genome-wide targeted mutagenesis in rice using the CRISPR/Cas9 system. Mol Plant 10(9):1242–1245.  https://doi.org/10.1016/j.molp.2017.06.007 CrossRefPubMedGoogle Scholar
  55. Ma X, Zhu Q, Chen Y, Liu YG (2016) CRISPR/Cas9 platforms for genome editing in plants: developments and applications. Mol Plant 9(7):961–974.  https://doi.org/10.1016/j.molp.2016.04.009 CrossRefPubMedGoogle Scholar
  56. Ma Y, Zhao Y, Shangguan X, Shi S, Zeng Y, Wu Y, Chen R, You A, Zhu L, Du B, He G (2017) Overexpression of OsRRK1 changes leaf morphology and defense to insect in rice. Front Plant Sci 8:1783.  https://doi.org/10.3389/fpls.2017.01783 CrossRefPubMedPubMedCentralGoogle Scholar
  57. Meng X, Yu H, Zhang Y, Zhuang F, Song X, Gao S, Gao C, Li J (2017) Construction of a genome-wide mutant library in rice using CRISPR/Cas9. Mol Plant 10(9):1238–1241.  https://doi.org/10.1016/j.molp.2017.06.006 CrossRefPubMedGoogle Scholar
  58. Minakuchi K, Kameoka H, Yasuno N, Umehara M, Luo L, Kobayashi K, Hanada A, Ueno K, Asami T, Yamaguchi S, Kyozuka J (2010) FINE CULM1 (FC1) works downstream of strigolactones to inhibit the outgrowth of axillary buds in rice. Plant Cell Physiol 51(7):1127–1135.  https://doi.org/10.1093/pcp/pcq083 CrossRefPubMedPubMedCentralGoogle Scholar
  59. Miura K, Ikeda M, Matsubara A, Song XJ, Ito M, Asano K, Matsuoka M, Kitano H, Ashikari M (2010) OsSPL14 promotes panicle branching and higher grain productivity in rice. Nat Genet 42(6):545–549.  https://doi.org/10.1038/ng.592 CrossRefPubMedGoogle Scholar
  60. Mjomba FM, Zheng Y, Liu H, Tang W, Hong Z, Wang F, Wu W (2016) Homeobox is pivotal for OsWUS controlling tiller development and female fertility in rice. G3 (Bethesda) 6(7):2013–2021.  https://doi.org/10.1534/g3.116.028837 CrossRefGoogle Scholar
  61. Moon S, Jung KH, Lee DE, Lee DY, Lee J, An K, Kang HG, An G (2006) The rice FON1 gene controls vegetative and reproductive development by regulating shoot apical meristem size. Mol Cells 21(1):147–152PubMedGoogle Scholar
  62. Nagasawa N, Miyoshi M, Kitano H, Satoh H, Nagato Y (1996) Mutations associated with floral organ number in rice. Planta 198(4):627–633.  https://doi.org/10.1007/BF00262651 CrossRefPubMedGoogle Scholar
  63. Oikawa T, Kyozuka J (2009) Two-step regulation of LAX PANICLE1 protein accumulation in axillary meristem formation in rice. Plant Cell 21(4):1095–1108.  https://doi.org/10.1105/tpc.108.065425 CrossRefPubMedPubMedCentralGoogle Scholar
  64. Okamura M, Hirose T, Hashida Y, Yamagishi T, Ohsugi R, Aoki N (2014) Starch reduction in rice stems due to a lack of OsAGPL1 or OsAPL3 decreases grain yield under low irradiance during ripening and modifies plant architecture. Funct Plant Biol 40(11):1137.  https://doi.org/10.1071/fp13105 CrossRefGoogle Scholar
  65. Okamura M, Hirose T, Hashida Y, Ohsugi R, Aoki N (2015) Suppression of starch synthesis in rice stems splays tiller angle due to gravitropic insensitivity but does not affect yield. Funct Plant Biol 42(1):31.  https://doi.org/10.1071/fp14159 CrossRefGoogle Scholar
  66. Rameau C, Bertheloot J, Leduc N, Andrieu B, Foucher F, Sakr S (2014) Multiple pathways regulate shoot branching. Front Plant Sci 5:741.  https://doi.org/10.3389/fpls.2014.00741 CrossRefPubMedGoogle Scholar
  67. Ren B, Yan F, Kuang Y, Li N, Zhang D, Lin H, Zhou H (2017) A CRISPR/Cas9 toolkit for efficient targeted base editing to induce genetic variations in rice. Sci China Life Sci 60(5):516–519.  https://doi.org/10.1007/s11427-016-0406-x CrossRefPubMedGoogle Scholar
  68. Ruan W, Guo M, Xu L, Wang X, Zhao H, Wang J, Yi K (2018) An SPX-RLI1 module regulates leaf inclination in response to phosphate availability in rice. Plant Cell 30(4):853–870.  https://doi.org/10.1105/tpc.17.00738 CrossRefPubMedPubMedCentralGoogle Scholar
  69. Sack FD (1997) Plastids and gravitropic sensing. Planta 203(Suppl 1):S63–S68CrossRefGoogle Scholar
  70. Sakuraba Y, Piao W, Lim JH, Han SH, Kim YS, An G, Paek NC (2015) Rice ONAC106 inhibits leaf senescence and increases salt tolerance and tiller angle. Plant Cell Physiol 56(12):2325–2339.  https://doi.org/10.1093/pcp/pcv144 CrossRefPubMedGoogle Scholar
  71. Sang D, Chen D, Liu G, Liang Y, Huang L, Meng X, Chu J, Sun X, Dong G, Yuan Y, Qian Q, Li J, Wang Y (2014) Strigolactones regulate rice tiller angle by attenuating shoot gravitropism through inhibiting auxin biosynthesis. Proc Natl Acad Sci U S A 111(30):11199–11204.  https://doi.org/10.1073/pnas.1411859111 CrossRefPubMedPubMedCentralGoogle Scholar
  72. Seto Y, Yasui R, Kameoka H, Tamiru M, Cao M, Terauchi R, Sakurada A, Hirano R, Kisugi T, Hanada A, Umehara M, Seo E, Akiyama K, Burke J, Takeda-Kamiya N, Li W, Hirano Y, Hakoshima T, Mashiguchi K, Noel JP, Kyozuka J, Yamaguchi S (2019) Strigolactone perception and deactivation by a hydrolase receptor DWARF14. Nat Commun 10(1):191.  https://doi.org/10.1038/s41467-018-08124-7 CrossRefPubMedPubMedCentralGoogle Scholar
  73. Shabek N, Ticchiarelli F, Mao H, Hinds TR, Leyser O, Zheng N (2018) Structural plasticity of D3-D14 ubiquitin ligase in strigolactone signalling. Nature 563(7733):652–656.  https://doi.org/10.1038/s41586-018-0743-5 CrossRefPubMedPubMedCentralGoogle Scholar
  74. Shang XL, Xie RR, Tian H, Wang QL, Guo FQ (2016) Putative zeatin O-glucosyltransferase OscZOG1 regulates root and shoot development and formation of agronomic traits in rice. J Integr Plant Biol 58(7):627–641.  https://doi.org/10.1111/jipb.12444 CrossRefPubMedGoogle Scholar
  75. Shao G, Lu Z, Xiong J, Wang B, Jing Y, Meng X, Liu G, Ma H, Liang Y, Chen F, Wang Y, Li J, Yu H (2019) Tiller bud formation regulators MOC3 and MOC1 cooperatively promote tiller bud outgrowth by activating FON1 expression in rice. Mol Plant 12(8):1090–1102.  https://doi.org/10.1016/j.molp.2019.04.008 CrossRefPubMedGoogle Scholar
  76. Song X, Lu Z, Yu H, Shao G, Xiong J, Meng X, Jing Y, Liu G, Xiong G, Duan J, Yao XF, Liu CM, Li H, Wang Y, Li J (2017) IPA1 functions as a downstream transcription factor repressed by D53 in strigolactone signaling in rice. Cell Res 27(9):1128–1141.  https://doi.org/10.1038/cr.2017.102 CrossRefPubMedPubMedCentralGoogle Scholar
  77. Strohm AK, Baldwin KL, Masson PH (2012) Multiple roles for membrane-associated protein trafficking and signaling in gravitropism. Front Plant Sci 3:274.  https://doi.org/10.3389/fpls.2012.00274 CrossRefPubMedPubMedCentralGoogle Scholar
  78. Sun Q, Li TY, Li DD, Wang ZY, Li S, Li DP, Han X, Liu JM, Xuan YH (2019) Overexpression of Loose Plant Architecture 1 increases planting density and resistance to sheath blight disease via activation of PIN-FORMED 1a in rice. Plant Biotechnol J 17(5):855–857.  https://doi.org/10.1111/pbi.13072 CrossRefPubMedPubMedCentralGoogle Scholar
  79. Suzaki T, Sato M, Ashikari M, Miyoshi M, Nagato Y, Hirano HY (2004) The gene FLORAL ORGAN NUMBER1 regulates floral meristem size in rice and encodes a leucine-rich repeat receptor kinase orthologous to Arabidopsis CLAVATA1. Development 131(22):5649–5657.  https://doi.org/10.1242/dev.01441 CrossRefPubMedGoogle Scholar
  80. Tabuchi H, Zhang Y, Hattori S, Omae M, Shimizu-Sato S, Oikawa T, Qian Q, Nishimura M, Kitano H, Xie H, Fang X, Yoshida H, Kyozuka J, Chen F, Sato Y (2011) LAX PANICLE2 of rice encodes a novel nuclear protein and regulates the formation of axillary meristems. Plant Cell 23(9):3276–3287.  https://doi.org/10.1105/tpc.111.088765 CrossRefPubMedPubMedCentralGoogle Scholar
  81. Tan L, Li X, Liu F, Sun X, Li C, Zhu Z, Fu Y, Cai H, Wang X, Xie D, Sun C (2008) Control of a key transition from prostrate to erect growth in rice domestication. Nat Genet 40(11):1360–1364.  https://doi.org/10.1038/ng.197 CrossRefPubMedGoogle Scholar
  82. Tan J, Wang M, Shi Z, Miao X (2018) OsEXPA10 mediates the balance between growth and resistance to biotic stress in rice. Plant Cell Rep 37(7):993–1002.  https://doi.org/10.1007/s00299-018-2284-7 CrossRefPubMedGoogle Scholar
  83. Tanaka W, Ohmori Y, Ushijima T, Matsusaka H, Matsushita T, Kumamaru T, Kawano S, Hirano HY (2015) Axillary meristem formation in rice requires the WUSCHEL rrtholog TILLERS ABSENT1. Plant Cell 27(4):1173–1184.  https://doi.org/10.1105/tpc.15.00074 CrossRefPubMedPubMedCentralGoogle Scholar
  84. Tasaka M, Kato T, Fukaki H (1999) The endodermis and shoot gravitropism. Trends Plant Sci 4(3):103–107CrossRefGoogle Scholar
  85. Umehara M, Hanada A, Yoshida S, Akiyama K, Arite T, Takeda-Kamiya N, Magome H, Kamiya Y, Shirasu K, Yoneyama K, Kyozuka J, Yamaguchi S (2008) Inhibition of shoot branching by new terpenoid plant hormones. Nature 455(7210):195–200.  https://doi.org/10.1038/nature07272 CrossRefPubMedGoogle Scholar
  86. Umehara M, Hanada A, Magome H, Takeda-Kamiya N, Yamaguchi S (2010) Contribution of strigolactones to the inhibition of tiller bud outgrowth under phosphate deficiency in rice. Plant Cell Physiol 51(7):1118–1126.  https://doi.org/10.1093/pcp/pcq084 CrossRefPubMedPubMedCentralGoogle Scholar
  87. van Limborgh J (1972) The role of genetic and local environmental factors in the control of postnatal craniofacial morphogenesis. Acta Morphol Neerl Scand 10(1):37–47PubMedGoogle Scholar
  88. Waite JM, Dardick C (2018) TILLER ANGLE CONTROL 1 modulates plant architecture in response to photosynthetic signals. J Exp Bot 69(20):4935–4944.  https://doi.org/10.1093/jxb/ery253 CrossRefPubMedGoogle Scholar
  89. Wang Y, Li J (2005) The plant architecture of rice (Oryza sativa). Plant Mol Biol 59(1):75–84.  https://doi.org/10.1007/s11103-004-4038-x CrossRefPubMedGoogle Scholar
  90. Wang Y, Li J (2006) Genes controlling plant architecture. Curr Opin Biotechnol 17(2):123–129.  https://doi.org/10.1016/j.copbio.2006.02.004 CrossRefPubMedGoogle Scholar
  91. Wang Y, Li J (2011) Branching in rice. Curr Opin Plant Biol 14(1):94–99.  https://doi.org/10.1016/j.pbi.2010.11.002 CrossRefPubMedGoogle Scholar
  92. Wang L, Sun S, Jin J, Fu D, Yang X, Weng X, Xu C, Li X, Xiao J, Zhang Q (2015) Coordinated regulation of vegetative and reproductive branching in rice. Proc Natl Acad Sci U S A 112(50):15504–15509.  https://doi.org/10.1073/pnas.1521949112 CrossRefPubMedPubMedCentralGoogle Scholar
  93. Wang J, Yu H, Xiong G, Lu Z, Jiao Y, Meng X, Liu G, Chen X, Wang Y, Li J (2017a) Tissue-specific ubiquitination by IPA1 INTERACTING PROTEIN1 modulates IPA1 PROTEIN levels to regulate plant architecture in Rice. Plant Cell 29(4):697–707.  https://doi.org/10.1105/tpc.16.00879 CrossRefPubMedPubMedCentralGoogle Scholar
  94. Wang S, Wu K, Qian Q, Liu Q, Li Q, Pan Y, Ye Y, Liu X, Wang J, Zhang J, Li S, Wu Y, Fu X (2017b) Non-canonical regulation of SPL transcription factors by a human OTUB1-like deubiquitinase defines a new plant type rice associated with higher grain yield. Cell Res 27(9):1142–1156.  https://doi.org/10.1038/cr.2017.98 CrossRefPubMedPubMedCentralGoogle Scholar
  95. Wang B, Smith SM, Li J (2018) Genetic regulation of shoot architecture. Annu Rev Plant Biol 69:437–468.  https://doi.org/10.1146/annurev-arplant-042817-040422 CrossRefPubMedGoogle Scholar
  96. Wang J, Lu K, Nie H, Zeng Q, Wu B, Qian J, Fang Z (2018a) Rice nitrate transporter OsNPF7.2 positively regulates tiller number and grain yield. Rice 11(1):12.  https://doi.org/10.1186/s12284-018-0205-6 CrossRefPubMedPubMedCentralGoogle Scholar
  97. Wang J, Zhou L, Shi H, Chern M, Yu H, Yi H, He M, Yin J, Zhu X, Li Y, Li W, Liu J, Wang J, Chen X, Qing H, Wang Y, Liu G, Wang W, Li P, Wu X, Zhu L, Zhou JM, Ronald PC, Li S, Li J, Chen X (2018b) A single transcription factor promotes both yield and immunity in rice. Science 361(6406):1026–1028.  https://doi.org/10.1126/science.aat7675 CrossRefPubMedGoogle Scholar
  98. Wang W, Hu B, Yuan D, Liu Y, Che R, Hu Y, Ou S, Zhang Z, Wang H, Li H, Jiang Z, Zhang Z, Gao X, Qiu Y, Meng X, Liu Y, Bai Y, Liang Y, Wang YQ, Zhang L, Li L, Sodmergen S, Jing HC, Li J, Chu C (2018c) Expression of the nitrate transporter gene OsNRT1.1A/OsNPF6.3 confers high yield and early maturation in rice. Plant Cell 30(3):638–651.  https://doi.org/10.1105/tpc.17.00809 CrossRefPubMedPubMedCentralGoogle Scholar
  99. Wang JY, Haider I, Jamil M, Fiorilli V, Saito Y, Mi J, Baz L, Kountche BA, Jia KP, Guo X, Balakrishna A, Ntui VO, Reinke B, Volpe V, Gojobori T, Blilou I, Lanfranco L, Bonfante P, Al-Babili S (2019) The apocarotenoid metabolite zaxinone regulates growth and strigolactone biosynthesis in rice. Nat Commun 10(1):810.  https://doi.org/10.1038/s41467-019-08461-1 CrossRefPubMedPubMedCentralGoogle Scholar
  100. Weng X, Wang L, Wang J, Hu Y, Du H, Xu C, Xing Y, Li X, Xiao J, Zhang Q (2014) Grain Number, Plant Height, and Heading Date7 is a central regulator of growth, development, and stress response. Plant Physiol 164(2):735–747.  https://doi.org/10.1104/pp.113.231308 CrossRefPubMedPubMedCentralGoogle Scholar
  101. Whipple CJ, Kebrom TH, Weber AL, Yang F, Hall D, Meeley R, Schmidt R, Doebley J, Brutnell TP, Jackson DP (2011) grassy tillers1 promotes apical dominance in maize and responds to shade signals in the grasses. Proc Natl Acad Sci U S A 108(33):E506–E512.  https://doi.org/10.1073/pnas.1102819108 CrossRefPubMedPubMedCentralGoogle Scholar
  102. Wu XR, Tang D, Li M, Wang KJ, Cheng ZK (2013) Loose plant Architecture1, an INDETERMINATE DOMAIN protein involved in shoot gravitropism, regulates plant architecture in rice. Plant Physiol 161(1):317–329.  https://doi.org/10.1104/pp.112.208496 CrossRefPubMedGoogle Scholar
  103. Wu Y, Zhao S, Li X, Zhang B, Jiang L, Tang Y, Zhao J, Ma X, Cai H, Sun C, Tan L (2018) Deletions linked to PROG1 gene participate in plant architecture domestication in Asian and African rice. Nat Commun 9(1):4157.  https://doi.org/10.1038/s41467-018-06509-2 CrossRefPubMedPubMedCentralGoogle Scholar
  104. Xie C, Zhang G, An L, Chen X, Fang R (2019) Phytochrome-interacting factor-like protein OsPIL15 integrates light and gravitropism to regulate tiller angle in rice. Planta 250(1):105–114.  https://doi.org/10.1007/s00425-019-03149-8 CrossRefPubMedGoogle Scholar
  105. Xu Y, McCouch SR, Shen Z (1998) Transgressive segregation of tiller angle in rice caused by complementary gene action. Crop Sci 38(1):12–19.  https://doi.org/10.2135/cropsci1998.0011183X003800010002x CrossRefGoogle Scholar
  106. Xu C, Wang Y, Yu Y, Duan J, Liao Z, Xiong G, Meng X, Liu G, Qian Q, Li J (2012) Degradation of MONOCULM 1 by APC/CTAD1 regulates rice tillering. Nat Commun 3:750.  https://doi.org/10.1038/ncomms1743 CrossRefPubMedPubMedCentralGoogle Scholar
  107. Yang N, Wang R, Zhao Y (2017a) Revolutionize genetic studies and crop improvement with high-throughput and genome-scale CRISPR/Cas9 gene editing technology. Mol Plant 10(9):1141–1143.  https://doi.org/10.1016/j.molp.2017.08.001 CrossRefPubMedPubMedCentralGoogle Scholar
  108. Yang J, Yuan Z, Meng Q, Huang G, Périn C, Bureau C, Meunier AC, Ingouff M, Bennett MJ, Liang W, Zhang D (2017b) Dynamic regulation of auxin response during rice development revealed by newly established hormone biosensor markers. Front Plant Sci 8:256.  https://doi.org/10.3389/fpls.2017.00256 CrossRefPubMedPubMedCentralGoogle Scholar
  109. Yang J, Cho LH, Yoon J, Yoon H, Wai AH, Hong WJ, Han M, Sakakibara H, Liang W, Jung KH, Jeon JS, Koh HJ, Zhang D, An G (2019) Chromatin interacting factor OsVIL2 increases biomass and rice grain yield. Plant Biotechnol J 17(1):178–187.  https://doi.org/10.1111/pbi.12956 CrossRefPubMedGoogle Scholar
  110. Yao R, Ming Z, Yan L, Li S, Wang F, Ma S, Yu C, Yang M, Chen L, Chen L, Li Y, Yan C, Miao D, Sun Z, Yan J, Sun Y, Wang L, Chu J, Fan S, He W, Deng H, Nan F, Li J, Rao Z, Lou Z, Xie D (2016) DWARF14 is a non-canonical hormone receptor for strigolactone. Nature 536(7617):469–473.  https://doi.org/10.1038/nature19073 CrossRefPubMedGoogle Scholar
  111. Yoshihara T, Iino M (2007) Identification of the gravitropism-related rice gene LAZY1 and elucidation of LAZY1-dependent and -independent gravity signaling pathways. Plant Cell Physiol 48(5):678–688.  https://doi.org/10.1093/pcp/pcm042 CrossRefPubMedGoogle Scholar
  112. Yu B, Lin Z, Li H, Li X, Li J, Wang Y, Zhang X, Zhu Z, Zhai W, Wang X, Xie D, Sun C (2007) TAC1, a major quantitative trait locus controlling tiller angle in rice. Plant J 52(5):891–898.  https://doi.org/10.1111/j.1365-313X.2007.03284.x CrossRefPubMedGoogle Scholar
  113. Yue E, Li C, Li Y, Liu Z, Xu JH (2017) MiR529a modulates panicle architecture through regulating SQUAMOSA PROMOTER BINDING-LIKE genes in rice (Oryza sativa). Plant Mol Biol 94(4–5):469–480.  https://doi.org/10.1007/s11103-017-0618-4 CrossRefPubMedGoogle Scholar
  114. Zeng D, Tian Z, Rao Y, Dong G, Yang Y, Huang L, Leng Y, Xu J, Sun C, Zhang G, Hu J, Zhu L, Gao Z, Hu X, Guo L, Xiong G, Wang Y, Li J, Qian Q (2017) Rational design of high-yield and superior-quality rice. Nat Plants 3:17031.  https://doi.org/10.1038/nplants.2017.31 CrossRefPubMedGoogle Scholar
  115. Zhang D, Yuan Z (2014) Molecular control of grass inflorescence development. Annu Rev Plant Biol 65:553–578.  https://doi.org/10.1146/annurev-arplant-050213-040104 CrossRefPubMedGoogle Scholar
  116. Zhang Y, van Dijk AD, Scaffidi A, Flematti GR, Hofmann M, Charnikhova T, Verstappen F, Hepworth J, van der Krol S, Leyser O, Smith SM, Zwanenburg B, Al-Babili S, Ruyter-Spira C, Bouwmeester HJ (2014) Rice cytochrome P450 MAX1 homologs catalyze distinct steps in strigolactone biosynthesis. Nat Chem Biol 10(12):1028–1033.  https://doi.org/10.1038/nchembio.1660 CrossRefPubMedGoogle Scholar
  117. Zhang L, Yu H, Ma B, Liu G, Wang J, Wang J, Gao R, Li J, Liu J, Xu J, Zhang Y, Li Q, Huang X, Xu J, Li J, Qian Q, Han B, He Z, Li J (2017) A natural tandem array alleviates epigenetic repression of IPA1 and leads to superior yielding rice. Nat Commun 8:14789.  https://doi.org/10.1038/ncomms14789 CrossRefPubMedPubMedCentralGoogle Scholar
  118. Zhang N, Yu H, Yu H, Cai Y, Huang L, Xu C, Xiong G, Meng X, Wang J, Chen H, Liu G, Jing Y, Yuan Y, Liang Y, Li S, Smith SM, Li J, Wang Y (2018) A core regulatory pathway controlling rice tiller angle mediated by the LAZY1-dependent asymmetric distribution of auxin. Plant Cell 30(7):1461–1475.  https://doi.org/10.1105/tpc.18.00063 CrossRefPubMedPubMedCentralGoogle Scholar
  119. Zhang W, Tan L, Sun H, Zhao X, Liu F, Cai H, Fu Y, Sun X, Gu P, Zhu Z, Sun C (2019) Natural variations at TIG1 encoding a TCP transcription factor contribute to plant architecture domestication in Rice. Mol Plant.  https://doi.org/10.1016/j.molp.2019.04.005 CrossRefGoogle Scholar
  120. Zhao H, Huai Z, Xiao Y, Wang X, Yu J, Ding G, Peng J (2014) Natural variation and genetic analysis of the tiller angle gene MsTAC1 in Miscanthus sinensis. Planta 240(1):161–175.  https://doi.org/10.1007/s00425-014-2070-x CrossRefPubMedGoogle Scholar
  121. Zhao L, Tan L, Zhu Z, Xiao L, Xie D, Sun C (2015) PAY1 improves plant architecture and enhances grain yield in rice. Plant J 83(3):528–536.  https://doi.org/10.1111/tpj.12905 CrossRefPubMedPubMedCentralGoogle Scholar
  122. Zhou F, Lin Q, Zhu L, Ren Y, Zhou K, Shabek N, Wu F, Mao H, Dong W, Gan L, Ma W, Gao H, Chen J, Yang C, Wang D, Tan J, Zhang X, Guo X, Wang J, Jiang L, Liu X, Chen W, Chu J, Yan C, Ueno K, Ito S, Asami T, Cheng Z, Lei C, Zhai H, Wu C, Wang H, Zheng N, Wan J (2013) D14-SCFD3-dependent degradation of D53 regulates strigolactone signalling. Nature 504(7480):406–410.  https://doi.org/10.1038/nature12878 CrossRefPubMedPubMedCentralGoogle Scholar
  123. Zou J, Zhang S, Zhang W, Li G, Chen Z, Zhai W, Zhao X, Pan X, Xie Q, Zhu L (2006) The rice HIGH-TILLERING DWARF1 encoding an ortholog of Arabidopsis MAX3 is required for negative regulation of the outgrowth of axillary buds. Plant J 48(5):687–698.  https://doi.org/10.1111/j.1365-313X.2006.02916.x CrossRefPubMedGoogle Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  1. 1.State Key Laboratory of Crop Biology, College of Life SciencesShandong Agricultural UniversityTai’anChina
  2. 2.State Key Laboratory of Plant Genomics and National Center for Plant Gene Research (Beijing), Institute of Genetics and Developmental BiologyChinese Academy of SciencesBeijingChina

Personalised recommendations