Molecular Breeding

, 39:161 | Cite as

Genotyping-by-sequencing approaches using optimized two-enzyme combinations in Asian pears (Pyrus spp.)

  • Kidong Hwang
  • Sewon Oh
  • Keumsun Kim
  • Hyeondae Han
  • Youngjae Oh
  • Hyeonkyu Lim
  • Yoon-Kyeong Kim
  • Daeil KimEmail author


In genotyping-by-sequencing (GBS) library construction, restriction enzyme (RE) can influence the size and number of DNA fragments. The objective of the present study was to improve GBS efficiency in pears (Pyrus spp.) by selecting optimized RE combination. To prove GBS efficiency of selected RE combination, population structure and genetic diversity results of Asian pears were compared in two single nucleotide polymorphisms (SNP) sets derived from different GBS libraries. After in silico digestion, ApeKI, ApeKI/TfiI, and ApeKI/MseI were selected to construct GBS libraries and the number of SNPs obtained from ApeKI/TfiI library were about six times more than that from the ApeKI library. In addition, the SNPs of ApeKI/TfiI library showed high accuracy in classification of Asian pear accessions. Thus, ApeKI/TfiI combination is recommended for construction of GBS library in pears because such RE combination could provide genome-wide and numerous informative SNPs for pear genetic studies.


ApeKI Next generation sequencing Pyrus Single nucleotide polymorphism Tfi



This work was supported by a grant from the Next-Generation BioGreen21 Program (No. PJ01311501), Rural Development Administration, Republic of Korea.

Supplementary material

11032_2019_1071_MOESM1_ESM.tif (3.2 mb)
DNA fragments of ApeKI, ApeKI/TfiI, and ApeKI/MseI libraries before and after purification. M, 100 bp of ladder marker. Black triangles indicate DNA band size of 500 and 1,000 bp (TIF 3226 kb)
11032_2019_1071_Fig7_ESM.png (292 kb)

(PNG 292 kb)

11032_2019_1071_MOESM2_ESM.tif (3.5 mb)
Estimated delta K values for determining optimal population numbers of 26 pear accessions. a, ApeKI library; b, ApeKI/TfiI library (TIF 3611 kb)
11032_2019_1071_Fig8_ESM.png (181 kb)

(PNG 181 kb)

11032_2019_1071_MOESM3_ESM.tif (2 mb)
The number of raw SNPs distribtuted in the pseudo-chromsome of pear (TIF 2070 kb)
11032_2019_1071_Fig9_ESM.png (197 kb)

(PNG 197 kb)

11032_2019_1071_MOESM4_ESM.docx (12 kb)
ESM 7 (DOCX 12 kb)
11032_2019_1071_MOESM5_ESM.docx (33 kb)
ESM 8 (DOCX 32 kb)
11032_2019_1071_MOESM6_ESM.docx (33 kb)
ESM 9 (DOCX 33 kb)


  1. Chung KH, Ko KC (1995) Classification of native and cultivated Pyrus species in Korea by cluster analysis of morphological characters. J Korean Soc Hortic Sci 36:678–683Google Scholar
  2. Cox MP, Peterson DA, Biggs PJ (2010) SolexaQA: at-a-glance quality assessment of Illumina second-generation sequencing data. BMC Bioinformatics 11:485. CrossRefPubMedPubMedCentralGoogle Scholar
  3. Earl DA, vonHoldt BM (2012) Structure harvester: a website and program for visualizing structure output and implementing the Evanno method. Conserv Genet Resour 4:359–361. CrossRefGoogle Scholar
  4. Elshire RJ, Glaubitz JC, Sun Q, Poland JA, Kawamoto K, Buckler ES, Mitchell SE (2011) A robust, simple genotyping-by-sequencing (GBS) approach for high diversity species. PLoS One 6:e19379. CrossRefPubMedPubMedCentralGoogle Scholar
  5. Falush D, Stephens M, Pritchard JK (2003) Inference of population structure using multilocus genotype data: linked loci and correlated allele frequencies. Genetics 164:1567–1587PubMedPubMedCentralGoogle Scholar
  6. Gabay G, Dahan Y, Izhaki Y, Faigenboim A, Ben-Ari G, Elkind Y, Flaishman MA (2018) High-resolution genetic linkage map of European pear (Pyrus communis) and QTL fine-mapping of vegetative budbreak time. BMC Plant Biol 18:175. CrossRefPubMedPubMedCentralGoogle Scholar
  7. Hamblin MT, Rabbi IY (2014) The effects of restriction-enzyme choice on properties of genotyping-by-sequencing libraries: a study in cassava (Manihot esculenta). Crop Sci 54:2603–2608. CrossRefGoogle Scholar
  8. Han K, Lee HY, Ro NY, Hur OS, Lee JH, Kwon JK, Kang BC (2018) QTL mapping and GWAS reveal candidate genes controlling capsaicinoid content in Capsicum. Plant Biotechnol J 16:1546–1558. CrossRefPubMedCentralGoogle Scholar
  9. Hart JP, Griffiths PD (2015) Genotyping-by-sequencing enabled mapping and marker development for the By-2 potyvirus resistance allele in common bean. Plant genome 8. doi
  10. Han H, Oh Y, Kim K, Oh S, Cho S, Kim YK, Kim D (2019) Integrated genetic linkage maps for Korean pears (Pyrus hybrid) using GBS-based SNPs and SSRs. Horticulture, Environment, and Biotechnology 60 (5):779-786.
  11. He J, Zhao X, Laroche A, Lu ZX, Liu HK, Li Z (2014) Genotyping-by-sequencing (GBS), an ultimate marker-assisted selection (MAS) tool to accelerate plant breeding. Front Plant Sci 5:484. CrossRefPubMedPubMedCentralGoogle Scholar
  12. Iketani H, Katayama H, Uematsu C, Mase N, Sato Y, Yamamoto T (2012) Genetic structure of east Asian cultivated pears (Pyrus spp.) and their reclassification in accordance with the nomenclature of cultivated plants. Plant Syst Evol 298:1689–1700. CrossRefGoogle Scholar
  13. Kim D, Ko KC (2004) Identification markers and phylogenetic analysis using RAPD in Asian pears (Pyrus spp.). J Korean Soc Hortic Sci 45:194–200Google Scholar
  14. Kim JE, Oh SK, Lee JH, Lee BM, Jo SH (2014) Genome-wide SNP calling using next generation sequencing data in tomato. Mol cells 37:36-42.
  15. Kim K, Oh Y, Han H, Oh S, Lim H, Chung JW, Kim YK, Kim D (2019) Genetic relationships and population structure of pears (Pyrus spp.) assessed with genome-wide SNPs detected by genotyping-by-sequencing. Hortic Environ Biotechnol
  16. Kumar S, Kirk C, Deng C, Wiedow C, Knaebel M, Brewer L (2017) Genotyping-by-sequencing of pear (Pyrus spp.) accessions unravels novel patterns of genetic diversity and selection footprints. Hortic res 4:17015.
  17. Kumar S, Kirk C, Deng CH, Wiedow C, Qin M, Espley R, Wu J, Brewer L (2019) Fine-mapping and validation of the genomic region underpinning pear red skin colour. Hortic Res 6:29. CrossRefPubMedPubMedCentralGoogle Scholar
  18. Li H, Durbin R (2009) Fast and accurate short read alignment with burrows-wheeler transform. Bioinformatics 25:1754–1760. CrossRefPubMedPubMedCentralGoogle Scholar
  19. Li H, Handsaker B, Wysoker A, Fennell T, Ruan J, Homer N, Marth G, Abecasis G, Durbin R, 1000 Genome Project Data Processing Subgroup (2009) The sequence alignment/map format and SAMtools. Bioinformatics 25:2078–2079. CrossRefGoogle Scholar
  20. Martin M (2011) Cutadapt removes adapter sequences from high-throughput sequencing reads. EMBnet J 17:10-12.
  21. McKenna A, Hanna M, Banks E, Sivachenko A, Cibulskis K, Kernytsky A, Garimella K, Altshuler D, Gabriel S, Daly M, DePristo MA (2010) The genome analysis toolkit: a MapReduced framework for analyzing next-generation DNA sequencing data. Genome Res 20:1297–1303. CrossRefPubMedPubMedCentralGoogle Scholar
  22. Nei M, Kumar S (2000) Molecular evolution and phylogenetics. Oxford University Press, OxfordGoogle Scholar
  23. Oh Y, Kim S, Shin H, Oh S, Won J, Oh SI, Han Y, Kim D, Kim Y, Bassil N (2017) Classification of Korean native pear based on a standard set of microsatellite loci. Acta Hortic 1172.
  24. Poland JA, Brown PJ, Sorrells ME, Jannink JL (2012) Development of high-density genetic maps for barley and wheat using a novel two-enzyme genotyping-by-sequencing approach. PLoS One 7:e32253. CrossRefPubMedPubMedCentralGoogle Scholar
  25. Pootakham W, Sonthirod C, Naktang C, Jomchai N, Sangsrakru D, Tangphatsornruang S (2016) Effects of methylation-sensitive enzymes on the enrichment of genic SNPs and the degree of genome complexity reduction in a two-enzyme genotyping-by-sequencing (GBS) approach: a case study in oil palm (Elaeis guineensis). Mol Breed 36:154. CrossRefPubMedPubMedCentralGoogle Scholar
  26. Pritchard JK, Stephens M, Donnelly P (2000) Inference of population structure using multilocus genotype data. Genetics 155:945–959PubMedPubMedCentralGoogle Scholar
  27. Rubtsov GA (1944) Geographical distribution of the genus Pyrus and trends and factors in its evolution. Am Nat 78:358–366. CrossRefGoogle Scholar
  28. Spindel J, Wright M, Chen C, Cobb J, Gage J, Harrington S, Lorieux M, Ahmadi N, McCouch S (2013) Bridging the genotyping gap: using genotyping by sequencing (GBS) to add high-density SNP markers and new value to traditional bi-parental mapping and breeding populations. Theor Appl Genet 126:2699–2716. CrossRefPubMedGoogle Scholar
  29. Schröder S, Mamidi S, Lee R, McKain MR, McClean PE, Osorno JM (2016) Optimization of genotyping by sequencing (GBS) data in common bean (Phaseolus vulagaris L.). Mol breed 36:6.
  30. Tamura K, Stecher G, Peterson D, Filipski A, Kumar S (2013) MEGA6: molecular evolutionary genetics analysis version 6.0. Mol Biol Evol 30:2725–2729. CrossRefPubMedPubMedCentralGoogle Scholar
  31. Teng Y, Tanabe K (2002) Reconsideration on the origin of cultivated pears native to East Asia. Acta Hortic 634:175-182.
  32. Wong MML, Gujaria-Verma N, Ramsay L, Yuan HY, Caron C, Diapari M, Vandenberg A, Bett KE (2015) Classification and characterization of species within the genus Lens using genotyping-by-sequencing (GBS). PLoS One 10:e0122025. CrossRefPubMedPubMedCentralGoogle Scholar
  33. Wu J, Wang Z, Shi Z, Zhang S, Ming R, Zhu S, Khan MA, Tao S, Korban SS, Wang H, Chen NJ, Nishio T, Xu X, Cong L, Qi K, Huang X, Wang Y, Zhao X, Wu J, Deng C, Gou C, Zhou W, Yin H, Qin G, Sha Y, Tao Y, Chen H, Yang Y, Song Y, Zhan D, Wang J, Li L, Dai M, Gu C, Wang Y, Shi D, Wang X, Zhang H, Zeng L, Zheng D, Wang C, Chen M, Wang G, Xie L, Sovero V, Sha S, Huang W, Zhang S, Zhang M, Sun J, Xu L, Li Y, Liu X, Li Q, Shen J, Wang J, Paull RE, Bennetzen JL, Wang J, Zhang S (2013) The genome of the pear (Pyrus bretschneideri Rehd.). Genome Res 23:396–408. CrossRefPubMedPubMedCentralGoogle Scholar
  34. Xue H, Wang S, Yao JL, Deng CH, Wang L, Su Y, Zhang H, Zhou H, Sun M, Li X, Yang J (2018) Chromosome level high-density integrated genetic maps improve the Pyrus bretschneideri ‘DangshansSuli’ v1.0 genome. BMC genomics 19:833.
  35. Yamamoto T, Kimura T, Sawamura Y, Kotobuki K, Ban Y, Hayashi T, Matsuta N (2001) SSRs isolated from apple can identify polymorphism and genetic diversity in pear. Theor Appl Genet 102:865–870. CrossRefGoogle Scholar
  36. Zhang M, Kimatu JN, Xu K, Liu B (2010) DNA cytosine methylation in plant development. J Genet Genomics 37:1–12. CrossRefPubMedGoogle Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  1. 1.Department of HorticultureChungbuk National UniversityCheongjuSouth Korea
  2. 2.Department of Horticultural Science, IFAS Gulf Coast Research and Education CenterUniversity of FloridaWimuamaUSA
  3. 3.Pear Research station, National Institute of Horticultural and Herbal ScienceRural Development AdministrationNajuSouth Korea

Personalised recommendations