Advertisement

Molecular Breeding

, 39:169 | Cite as

QTL mapping of root and aboveground biomass in the Brassica C genome using a B. napus population carrying genome content introgressed from B. oleracea

  • Berisso Kebede
  • Habibur RahmanEmail author
Article
  • 44 Downloads

Abstract

Root and aboveground biomass are important traits for resource acquisition and play an important role in the plant’s competitive ability and contribute to seed yield. A linkage map of the C genome of Brassica napus was constructed using a doubled haploid population, derived from cross between a B. napus line RIL144 carrying genome content introgressed from B. oleracea and a B. napus cultivar Hi-Q, and using SNP and SSR markers. The mapping population was evaluated for these two traits in a growth chamber set at 18/8 °C and 16 h photoperiod. Variation for both traits including transgressive segregation for root biomass was found. Ten QTL on chromosomes C1, C2, C6, C7 and C9 affecting root biomass and seven QTL on C1, C2, C4 and C8 affecting aboveground biomass were detected; among these, QTL allele of C2 and C6 of RIL-144 increased root biomass. Two additive × additive epistatic interactions were detected for aboveground biomass; the epistatic effects were 2–3 folds greater than the main effect of the QTL implying that gene interaction plays as an important role for this trait. BLASTn search of the C1, C2, C6 and C9 QTL regions showed homoeology with Arabidopsis thaliana chromosome At1, C9 QTL showed homoeology with At4 and At5, and C7 QTL showed homoeology with At2; these A. thaliana chromosome regions found to carry genes regulating root characteristics. Thus, the molecular markers identified and the knowledge of the genomic regions gained from this research can be used to improve the root and aboveground biomass traits of B. napus.

Keywords

Brassica C genome QTL Root biomass Aboveground biomass Composite interval mapping Association mapping 

Notes

Acknowledgments

We thanks the personnel’s from the Canola Program of the University of Alberta including summer students for assistance in different routine operations.

Authors’ contribution

B.K. carried out the research, analyzed data and prepared the first draft. H.R. designed the project, supervised B.K., secured funding, and finalized the paper. Both authors read and approved the final manuscript.

Funding information

H.R. thanks the Natural Sciences and Engineering Research Council (NSERC), Alberta Innovates Bio Solutions (AI Bio), Alberta Crop Industry Development Fund (ACIDF), Alberta Canola Producers Commission (ACPC), and the industry partner Crop Production Services (CPS) for providing financial support to this project. Financial support from the Canada Foundation of Innovation (CFI) for infrastructure development in the Canola Program, and infrastructure provided by University of Alberta is also gratefully acknowledged.

Compliance with ethical standards

Conflict of interests

The authors declare that they have no competing interests.

Supplementary material

11032_2019_1064_MOESM1_ESM.docx (41 kb)
ESM 1(DOCX 41 kb)
11032_2019_1064_MOESM2_ESM.xlsx (97 kb)
ESM 2(XLSX 97 kb)
11032_2019_1064_MOESM3_ESM.docx (332 kb)
ESM 3(DOCX 331 kb)
11032_2019_1064_MOESM4_ESM.docx (32 kb)
ESM 4(DOCX 31 kb)
11032_2019_1064_MOESM5_ESM.docx (31 kb)
ESM 5(DOCX 30 kb)

References

  1. Akhtar MS, Oki Y, Adachi T (2007) Path and correlation analysis of the factors affecting biomass production of Brassica cultivars under phosphorus deficiency stress environment. Comm Soil Sci Plant Anal 38:26–59.  https://doi.org/10.1080/00103620701662893 CrossRefGoogle Scholar
  2. ArifUzZaman M, Mamidi S, McClean P, Rahman M (2017) QTL mapping for root vigor and days to flowering in Brassica napus L. Can J Plant Sci 97:99–109. dx.doi.org.  https://doi.org/10.1139/cjps-2016-0048 CrossRefGoogle Scholar
  3. Benfey PN, Bennett M, Schiefelbein J (2010) Getting to the root of plant biology: impact of the Arabidopsis genome sequence on root research. The Plant J 61:992–1000.  https://doi.org/10.1111/j.1365-313X.2010.04129.x CrossRefPubMedGoogle Scholar
  4. Chalhoub B, Denoeud F, Li S, Parkin IA, Tang H, Wang X et al (2014) Early allopolyploid evolution in the post-Neolithic Brassica napus oilseed genome. Science 345:950–953.  https://doi.org/10.1126/science.1253435 CrossRefPubMedGoogle Scholar
  5. Clarke WE, Higgins EE, Plieske J, Wieseke R, Sidebottom C, Khedikar Y, Batley J, Edwards D, Meng J, Li R, Lawley CT, Pauquet J, Laga B, Cheung W, Iniguez-Luy F, Dyrszka E, Rae S, Stich B, Snowdon RJ, Sharpe AG, Ganal MW, Parkin IA (2016) A high-density SNP genotyping array for Brassica napus and its ancestral diploid species based on optimised selection of single-locus markers in the allotetraploid genome. Theor Appl Genet 129:1887–1899.  https://doi.org/10.1007/s00122-016-2746-7 CrossRefPubMedPubMedCentralGoogle Scholar
  6. Edwards CE, Ewers BE, Weinig C (2016) Genotypic variation in biomass allocation in response to field drought has a greater affect on yield than gas exchange or phenology. BMC Plant Biol 16:185.  https://doi.org/10.1186/s12870-016-0876-3 CrossRefPubMedPubMedCentralGoogle Scholar
  7. Fletcher RS, Mullen JL, Heiliger A, McKay JK (2015) QTL analysis of root morphology, flowering time, and yield reveals trade-offs in response to drought in Brassica napus. J Exp Bot 66:245–256.  https://doi.org/10.1093/jxb/eru423 CrossRefPubMedGoogle Scholar
  8. Geng JF, Zhu CS, Zhang XW, Cheng Y, Zhang YM, Hou XL (2007) A genetic linkage map of nonheading Chinese cabbage. J am Soc Hort Sci 132:816–823. Doi.  https://doi.org/10.21273/JASHS.132.6.816 CrossRefGoogle Scholar
  9. Hammond JP, Broadley MR, White PJ, King GJ, Bowen HC, Hayden R et al (2009) Shoot yield drives phosphorus use efficiency in Brassica oleracea and correlates with root architecture traits. J Exp Bot 60:1953–1968.  https://doi.org/10.1093/jxb/erp083 CrossRefPubMedGoogle Scholar
  10. Harris JM (2015) Abscisic acid: hidden architect of root system structure. Plants 4:548–572CrossRefGoogle Scholar
  11. Hill J, Becker HC, Tigerstedt PMA (1998) Quantitative and ecological aspects of plant breeding. p. 119–120. Chapman & Hall, LondonGoogle Scholar
  12. Jin J, Liu X, Wang G, Mi L, Shen Z, Chen X, Herbert SJ (2010) Agronomic and physiological contributions to the yield improvement of soybean cultivars released from 1950 to 2006 in Northeast China. Field Crops Res 115:116–123.  https://doi.org/10.1016/j.fcr.2009.10.016 CrossRefGoogle Scholar
  13. Jordan WR, Dugas WA, Shouse PJ (1983) Strategies for crop improvement drought-prone region (Sorghum bicolor, Triticum aestivum, wheat plant breeding). J.F. Stone and W.O. Willis, editors, Agricultural water management. Elsevier, Amsterdam, the Netherlands, pp 281–299Google Scholar
  14. Kiran A, Wakeel A, Snowdon R, Friedt W (2019) Genetic dissection of root architectural traits by QTL and genome-wide association mapping in rapeseed (Brassica napus). Plant Breed 138:184–192.  https://doi.org/10.1111/pbr.12665 CrossRefGoogle Scholar
  15. Kosambi DD (1944) The estimation of map distance from recombination values. Ann Eugenics 12:172–175CrossRefGoogle Scholar
  16. Koscielny CB, Gulden RH (2012) Seedling root length in Brassica napus L. is indicative of seed yield. Can J plant Sci 92:1229-1237. Doi.  https://doi.org/10.4141/cjps2012-070 CrossRefGoogle Scholar
  17. Körber N, Bus A, Li J, Higgins J, Bancroft I, Higgins EE, Parkin IAP, Salazar-Colqui B, Snowdon RJ, Stich B (2015) Seedling development traits in Brassica napus examined by gene expression analysis and association mapping. BMC Plant biol 15:136.  https://doi.org/10.1186/s12870-015-0496-3
  18. Kumar M (2016) Impact of climate change on crop yield and role of model for achieving food security. Environ Monit Assess 188:465.  https://doi.org/10.1007/s10661-016-5472-3
  19. Kubo N, Saito M, Tsukazaki H, Kondo T, Matsumoto S, Hirai M (2010) detection of quantitative trait loci controlling morphological traits in Brassica rapa L. breed Sci 60:164–171. Doi.  https://doi.org/10.1270/jsbbs.60.164 CrossRefGoogle Scholar
  20. Lipka AE, Tian F, Wang Q, Peiffer J, Li M, Bradbury PJ, Gore MA, Buckler ES, Zhang Z (2012) GAPIT: genome association and prediction integrated tool. Bioinformatics 28:2397–2399.  https://doi.org/10.1093/bioinformatics/bts444 CrossRefGoogle Scholar
  21. Lobell DB, Gourdji SM (2012) The influence of climate change on global crop productivity. Plant Physiol 160:1686–1697. Doi.  https://doi.org/10.1104/pp.112.208298 CrossRefGoogle Scholar
  22. Lou P, Zhao J, Kim JS, Shen S, Del Carpio DP, Song X, Jin M, Vreugdenhil D, Wang X, Koornneef M, Bonnema G (2007) Quantitative trait loci for flowering time and morphological traits in multiple populations of Brassica rapa. J Exp Bot 58:4005–4016.  https://doi.org/10.1093/jxb/erm255 CrossRefPubMedGoogle Scholar
  23. Luo LJ, Li ZK, Mei HW, Shu QY, Tabien R, Zhong DB, Ying CS, Stansel JW, Khush GS, Paterson AH (2001) Overdominance and epistasis loci are the primary genetic basis of inbreeding depression and heterosis in rice. II Grain yield components Genetics 158:1755–1771PubMedGoogle Scholar
  24. Loudet O, Gaudon V, Trubuil A, Daniel-Vedele F (2005) Quantitative trait loci controlling root growth and architecture in Arabidopsis thaliana confirmed by heterogeneous inbred family. Theor Appl Genet 110:742–753.  https://doi.org/10.1007/s00122-004-1900-9 CrossRefPubMedGoogle Scholar
  25. Ludlow MM, Muchow RC (1990) A critical evaluation of traits for improving crops in water-limited environments. Adv Agron 43:107–153CrossRefGoogle Scholar
  26. Lynch J (1995) Root architecture and plant productivity. Plant Physiol 109:7–13CrossRefGoogle Scholar
  27. MacMillan K, Emrich K, Piepho HP, Mullins CE, Price AH (2006) Assessing the importance of genotype × environment interaction for root traits in rice using a mapping population II: conventional QTL analysis. Theor Appl Genet 113:953–964.  https://doi.org/10.1007/s00122-006-0357-4 CrossRefPubMedGoogle Scholar
  28. Malmberg RL, Held S, Waits A, Mauricio R (2005) Epistasis for fitness-related quantitative traits in Arabidopsis thaliana grown in the field and in the greenhouse. Genetics 171:2013–2027.  https://doi.org/10.1534/genetics.105.046078 CrossRefPubMedPubMedCentralGoogle Scholar
  29. Morrison MJ, Harker KN, Blackshaw RE, Holzapfel CJ, O’Donovan JT (2016) Canola yield improvement on the Canadian prairies from 2000 to 2013. Crop and pasture Sci 67:245-252. Doi.  https://doi.org/10.1071/CP15348 CrossRefGoogle Scholar
  30. Mouchel CF, Briggs GC, Hardtke CS (2004) Natural genetic variation in Arabidopsis identifies BREVIS RADIX, a novel regulator of cell proliferation and elongation in the root. Genes Dev 18:700–714.  https://doi.org/10.1101/gad.1187704 CrossRefPubMedPubMedCentralGoogle Scholar
  31. Mu XH, Chen FJ, Wu QP, Chen QW, Wang JF, Yuan LX, Mi GH (2015) Genetic improvement of root growth increases maize yield via enhanced post-silking nitrogen uptake. Euro J Agron 63:55–61. Doi.  https://doi.org/10.1016/j.eja.2014.11.009 CrossRefGoogle Scholar
  32. Nordström A, Tarkowski P, Tarkowska D, Norbaek R, Åstot C, Dolezal K, Sandberg G (2004) Auxin regulation of cytokinin biosynthesis in Arabidopsis thaliana: a factor of potential importance for auxin-cytokinin-regulated development. Proc Natl Acad Sci U S A 101:8039–8044CrossRefGoogle Scholar
  33. Pace J, Gardner C, Romay C, Ganapathysubramanian B, Lübberstedt T (2015) Genome-wide association analysis of seedling root development in maize (Zea mays L.). BMC Genomics 16:47.  https://doi.org/10.3390/plants4020334 CrossRefPubMedPubMedCentralGoogle Scholar
  34. Paez-Garcia A, Motes CM, Scheible WR, Chen R, Blancaflor EB, Monteros MJ (2015) Root traits and phenotyping strategies for plant improvement. Plants 4:334–355.  https://doi.org/10.3390/plants4020334 CrossRefPubMedPubMedCentralGoogle Scholar
  35. Parkin I (2011) Chasing ghosts: comparative mapping in the Brassicaceae. In: Schmidt R, Bancroft I (eds) Genetics and genomics of the Brassicaceae, plant genetics and genomics: crops and models 9. Springer, New York, Dordrecht, Heidelberg, London, pp 153–170CrossRefGoogle Scholar
  36. Petricka JJ, Winter CM, Benfey PN (2012) Control of Arabidopsis root development. Ann Rev Plant Biol 63:563–590.  https://doi.org/10.1146/annurev-arplant-042811-105501 CrossRefGoogle Scholar
  37. Qiu D, Morgan C, Shi J, Long Y, Liu J, Li R et al (2006) A comparative linkage map of oilseed rape and its use for QTL analysis of seed oil and erucic acid content. Theor Appl Genet 114:67–80.  https://doi.org/10.1007/s00122-006-0411-2 CrossRefPubMedGoogle Scholar
  38. Renard M (2014) Breeding for seed yield and seed quality in oilseed Brassicas: main past successes and main challenges for the future? 19th crucifer genetic workshop. Wuhan, ChinaGoogle Scholar
  39. Rahman MH, Bennett RA, Yang R-C, Thiagarajah MR (2011) Exploitation of the late flowering species Brassica oleracea L. for the improvement of earliness in B. napus L. – an untraditional approach. Euphytica 177:365–374CrossRefGoogle Scholar
  40. Rahman H, Kebede B (2012) Improvement of spring canola Brassica napus (L.) by use of winter canola. J Oilseed Brassica 3:1–17Google Scholar
  41. Rahman M, McClean P (2013) Genetic analysis on flowering time and root system in Brassica napus L. Crop Sci 53:141–147.  https://doi.org/10.2135/cropsci2012.02.0095 CrossRefGoogle Scholar
  42. Rahman H, Bennett R, Kebede B (2017) Mapping of days to flower and seed yield in spring oilseed Brassica napus carrying genome content introgressed from B. oleracea. Mol breed 37:5.  https://doi.org/10.1007/s11032-016-0608-2
  43. Rahman H, Bennett RA, Kebede B (2018) Molecular mapping of QTL alleles of Brassica oleracea affecting days to flowering and photosensitivity in spring Brassica napus. PLoS One 13:e0189723.  https://doi.org/10.1371/journal.pone.0189723 CrossRefGoogle Scholar
  44. SAS Institute (2012). SAS/Stat User’s Guide, Version 9.4. SAS Institute Inc., Cary, NCGoogle Scholar
  45. Sharp RE, Davies WJ (1979) Solute regulation and growth by roots and shoots of water-stressed maize plants. Planta 147:43–49CrossRefGoogle Scholar
  46. Shi L, Yang J, Liu J, Li R, Long Y, Xu F, Meng J (2012) Identification of quantitative trait loci associated with low boron stress that regulate root and shoot growth in Brassica napus seedlings. Mol Breed 30:393–406CrossRefGoogle Scholar
  47. Shi L, Shi T, Broadley MR, White PJ, Long Y, Meng J, Xu F, Hammond JP (2013) High throughput root phenotyping screens identify genetic loci associated with root architectural traits in Brassica napus under contrasting phosphate availabilities. Ann Bot 112:381–389.  https://doi.org/10.1093/aob/mcs245 CrossRefPubMedGoogle Scholar
  48. Smith S, De Smet I (2012) Root system architecture: insights from Arabidopsis and cereal crops. Philos Trans R Soc Lond Ser B Biol Sci 367:1441–1452.  https://doi.org/10.1098/rstb.2011.0234 CrossRefGoogle Scholar
  49. Steele KA, Price AH, Witcombe JR, Shrestha R, Singh BN, Gibbons JM, Virk DS (2013) QTLs associated with root traits increase yield in upland rice when transferred through marker-assisted selection. Theor Appl Genet 126:101–108.  https://doi.org/10.1007/s00122-012-1963-y CrossRefPubMedGoogle Scholar
  50. Thomas CL, Graham NS, Hayden R, Meacham MC, Neugebauer K, Nightingale M, et. al. (2016) High throughput phenotyping (HTP) identifies seedling root traits linked to variation in seed yield and nutrient capture in field-grown oilseed rape (Brassica napus L.). Ann Bot 118:655–665. doi:  https://doi.org/10.1093/aob/mcw046 CrossRefGoogle Scholar
  51. Topp CN, Iyer-Pascuzzi AS, Anderson JT, Lee C-R, Zurek PR, Symonova O, et. al. (2013) 3D phenotyping and quantitative trait locus mapping identify core regions of the rice genome controlling root architecture. Proc Natl Acad Sci U S A 110:E1695–E1704CrossRefGoogle Scholar
  52. Uzunova M, Ecke W, Weissleder K, Röbbelen G (1995) Mapping the genome of rapeseed (Brassica napus L.). I. Construction of an RFLP linkage map and localization of QTLs for seed glucosinolate content. Theor Appl Genet 90:194–204.  https://doi.org/10.1007/BF00222202 CrossRefPubMedGoogle Scholar
  53. Van Ooijen J, Voorrips R (2006) JoinMap 4.0. Software for the calculation of genetic linkage maps in experimental populations. Kyazma B.V, Wageningen, NetherlandsGoogle Scholar
  54. Wang J, Dun X, Shi J, Wang X, Liu G, Wang H (2017a) Genetic dissection of root morphological traits related to nitrogen use efficiency in Brassica napus L. under two contrasting nitrogen conditions. Front plant Sci 8:1709.  https://doi.org/10.3389/fpls.2017.01709
  55. Wang X, Chen Y, Thomas CL, Ding G, Xu P, Shi D, Grandke F, Jin K, Cai H, Xu F, Yi B, Broadley MR, Shi L (2017b) Genetic variants associated with the root system architecture of oilseed rape (Brassica napus L.) under contrasting phosphate supply. DNA Res 24:407–417.  https://doi.org/10.1093/dnares/dsx013 CrossRefPubMedPubMedCentralGoogle Scholar
  56. Wang SC, Bastern J, Zeng ZB (2006) Windows QTL cartographer 2.5. Department of statistics, North Carolina state university, Raleigh, NC. http://statgen.ncsu.edu/qtlcart/ WQTLCart.Htm
  57. Werner T, Motyka V, Strnad M, Schmülling T (2001) Regulation of plant growth by cytokinin. Proc Natl Acad Sci U S A 98:10487–10492CrossRefGoogle Scholar
  58. Wasson AP, Richards RA, Chatrath ., Misra SC, Sai Prasad SC, Rebetzke GJ, et al. (2012) Traits and selection strategies to improve root systems and water uptake in water limited wheat crops. J Exp Bot 63:3485–3498. doi:  https://doi.org/10.1093/jxb/ers111 CrossRefGoogle Scholar
  59. Wu J, Yuan Y-X, Zhang X-W, Zhao J, Song X, Li Y, Li X, Sun R, Koornneef M, Aarts MGM, Wang X-W (2008) Mapping QTLs for mineral accumulation and shoot dry biomass under different Zn nutritional conditions in Chinese cabbage (Brassica rapa L. ssp. pekinensis). Plant Soil 310:25–40CrossRefGoogle Scholar
  60. Yang M, Ding G, Shi L, Feng J, Xu F, Meng J (2010) Quantitative trait loci for root morphology in response to low phosphorus stress in Brassica napus. Theor Appl Genet 121:181–193.  https://doi.org/10.1007/s00122-010-1301-1 CrossRefGoogle Scholar
  61. Yang M, Ding G, Shi L, Xu F, Meng J (2011) Detection of QTL for phosphorus efficiency at vegetative stage in Brassica napus. Plant Soil 339:97–111CrossRefGoogle Scholar
  62. Yang J, Hu C, Hu H, Yu R, Xia Z, Xiuzi Y, Zhu J (2008) QTLNetwork: mapping and visualizing genetic architecture of complex traits in experimental populations. Bioinformatics 24:721–723CrossRefGoogle Scholar
  63. Zand E, Beckie HJ (2002) Competitive ability of hybrid and open-pollinated canola (Brassica napus) with wild oat (Avena fatua). Can J plant Sci 82:473-480. Doi.  https://doi.org/10.4141/P01-149 CrossRefGoogle Scholar
  64. Zhang Y, Thomas CL, Xiang J, Long Y, Wang X, Zou J, Luo Z, Ding G, Cai H, Graham NS, Hammond JP, King GJ, White PJ, Xu F, Broadley MR, Shi L, Meng J (2016) QTL meta-analysis of root traits in Brassica napus under contrasting phosphorus supply in two growth systems. Sci Rep 6:33113.  https://doi.org/10.1038/srep33113 CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  1. 1.Department of Agricultural, Food and Nutritional ScienceUniversity of AlbertaEdmontonCanada

Personalised recommendations