Advertisement

Molecular Breeding

, 39:165 | Cite as

Towards a deeper integrated multi-omics approach in the root system to develop climate-resilient rice

  • Kanami Yoshino
  • Yuko Numajiri
  • Shota Teramoto
  • Naoki Kawachi
  • Takanari Tanabata
  • Tsuyoshi Tanaka
  • Takeshi Hayashi
  • Taiji KawakatsuEmail author
  • Yusaku UgaEmail author
Article
Part of the following topical collections:
  1. Topical Collection on Rice Functional Genomics

Abstract

Roots are the only organ system to uptake water and nutrients from the soil. The root system is crucial for plants to survive and adapt to environmental stresses. Therefore, the root system architecture (RSA) is an important breeding target for developing climate-resilient rice. Since the rice genome has been completely sequenced, many genes for root development have been cloned and characterized. In addition, with the advances in technologies related to omics analysis, such as high-throughput sequencing, transcriptome analysis of roots has also progressed. In contrast, high-throughput root phenotyping has not been established not only in rice but also in whole plants because roots are hidden underground. This deficiency represents a bottleneck for utilizing an integrated multi-omics approach for molecular breeding of RSA. We first summarized previous transcriptome analyses for root development under various abiotic stresses such as drought, salinity, and heat, and assessed the current status of root phenotyping technology and modeling in rice. This knowledge allowed us to contemplate the possibility of applying an integrated multi-omics dataset from RSA to molecular breeding of climate-resilient rice.

Keywords

Image analysis Phenomics ROOTomics Root morphology Transcriptomics X-ray computed tomography 

Notes

Acknowledgments

We thank the staff of the technical support center of the National Agriculture and Food Research Organization for their field management and experimental support

Funding information

This work was financially supported by JST CREST Grant Number JPMJCR17O1, Japan.

Compliance with ethical standards

Conflicts of interest

The authors declare that they have no conflict of interest.

References

  1. Abe J, Morita S (1994) Growth direction of nodal roots in rice: its variation and contribution to root system formation. Plant Soil 165:333–337CrossRefGoogle Scholar
  2. Alahmad S, El Hassouni K, Bassi FM, Dinglasan E, Youssef C, Quarry G, Aksoy A, Mazzucotelli E, Juhász A, Able JA, Christopher J, Voss-Fels KP, Hickey LT (2019) A major root architecture QTL responding to water limitation in durum wheat. Front Plant Sci 10:436PubMedPubMedCentralCrossRefGoogle Scholar
  3. Al-Tamimi N, Brien C, Oakey H, Berger B, Saade S, Ho YS, Schmöckel SM, Tester M, Negrão S (2016) Salinity tolerance loci revealed in rice using high-throughput non-invasive phenotyping. Nat Commun 7:13342PubMedPubMedCentralCrossRefGoogle Scholar
  4. Andrew SPS (1987) A mathematical model of root exploration and of grain fill with particular reference to winter wheat. Fertil Res 11:267–281CrossRefGoogle Scholar
  5. Arai-Sanoh Y, Takai T, Yoshinaga S, Nakano H, Kojima M, Sakakibara H, Kondo M, Uga Y (2014) Deep rooting conferred by DEEPER ROOTING 1 enhances rice yield in paddy fields. Sci Rep 4:5563PubMedPubMedCentralCrossRefGoogle Scholar
  6. Asseng S, Richter C, Wessolek G (1997) Modelling root growth of wheat as the linkage between crop and soil. Plant Soil 190:267–277CrossRefGoogle Scholar
  7. Atkinson NJ, Lilley CJ, Urwin PE (2013) Identification of genes involved in the response of Arabidopsis to simultaneous biotic and abiotic stresses. Plant Physiol 162:2028–2041PubMedPubMedCentralCrossRefGoogle Scholar
  8. Atkinson JA, Lobet G, Noll M, Meyer PE, Griffiths M, Wells DM (2017) Combining semi-automated image analysis techniques with machine learning algorithms to accelerate large-scale genetic studies. Gigascience 6:1–7PubMedPubMedCentralCrossRefGoogle Scholar
  9. Atkinson JA, Pound MP, Bennett MJ, Wells DM (2019) Uncovering the hidden half of plants using new advances in root phenotyping. Curr Opin Biotechnol 55:1–8PubMedPubMedCentralCrossRefGoogle Scholar
  10. Baldoni E, Bagnaresi P, Locatelli F, Mattana M, Genga A (2016) Comparative leaf and root transcriptomic analysis of two rice japonica cultivars reveals major differences in the root early response to osmotic stress. Rice 9:25PubMedPubMedCentralCrossRefGoogle Scholar
  11. Böhm W (1979) Methods of studying root systems. Springer-Verlag, BerlinCrossRefGoogle Scholar
  12. Borg H, Grimes DW (1986) Depth development of roots with time: an empirical description. Trans ASAE 29:194–197CrossRefGoogle Scholar
  13. Bradski G (2000) The OpenCV library. Dr. Dobb’s. J Software Tools 120:122–125Google Scholar
  14. Brinke A, Reifferscheid G, Klein R, Feiler U, Buchinger S (2018) Transcriptional changes measured in rice roots after exposure to arsenite-contaminated sediments. Environ Sci Pollut Res Int 25:2707–2717PubMedCrossRefPubMedCentralGoogle Scholar
  15. Burridge J, Jochua CN, Bucksch A, Lynch JP (2016) Legume shovelomics: high-throughput phenotyping of common bean (Phaseolus vulgaris L.) and cowpea (Vigna unguiculata subsp, unguiculata) root architecture in the field. Field Crop Res 192:21–32CrossRefGoogle Scholar
  16. Cai H, Lu Y, Xie W, Zhu T, Lian X (2012a) Transcriptome response to nitrogen starvation in rice. J Biosci 37:731–747PubMedCrossRefPubMedCentralGoogle Scholar
  17. Cai H, Xie W, Zhu T, Lian X (2012b) Transcriptome response to phosphorus starvation in rice. Acta Physiol Plant 34:327–341CrossRefGoogle Scholar
  18. Cai J, Zeng Z, Connor JN, Huang CY, Melino V, Kumar P, Miklavcic SJ (2015) RootGraph: a graphic optimization tool for automated image analysis of plant roots. J Exp Bot 66:6551–6662PubMedPubMedCentralCrossRefGoogle Scholar
  19. Canadell J, Jackson RB, Ehleringer JB, Mooney HA, Sala OE, Schulze ED (1996) Maximum rooting depth of vegetation types at the global scale. Oecologia 108:583–595PubMedCrossRefPubMedCentralGoogle Scholar
  20. Chapman SC, Hammer GL, Meinke H (1993) A sunflower simulation model: I. Model development. Agron J 85:725–735CrossRefGoogle Scholar
  21. Chaudhuri S, Chatterjee S, Katz N, Nelson M, Goldbaum M (1989) Detection of blood vessels in retinal images using two-dimensional matched filters. IEEE Trans Med Imaging 8:263–269PubMedCrossRefPubMedCentralGoogle Scholar
  22. Chen R, Cheng Y, Han S, Van Handel B, Dong L, Li X, Xie X (2017a) Whole genome sequencing and comparative transcriptome analysis of a novel seawater adapted, salt-resistant rice cultivar - sea rice 86. BMC Genomics 18:655PubMedPubMedCentralCrossRefGoogle Scholar
  23. Chen X, Ding Q, Błaszkiewicz Z, Sun J, Sun Q, He R, Li Y (2017b) Phenotyping for the dynamics of field wheat root system architecture. Sci Rep 7:37649PubMedPubMedCentralCrossRefGoogle Scholar
  24. Clark RT, MacCurdy RB, Jung JK, Shaff JE, McCouch SR, Aneshansley DJ, Kochian LV (2011) Three-dimensional root phenotyping with a novel imaging and software platform. Plant Physiol 156:455–465PubMedPubMedCentralCrossRefGoogle Scholar
  25. Cotsaftis O, Plett D, Johnson AA, Walia H, Wilson C, Ismail AM, Close TJ, Tester M, Baumann U (2011) Root-specific transcript profiling of contrasting rice genotypes in response to salinity stress. Mol Plant 4:25–41PubMedCrossRefPubMedCentralGoogle Scholar
  26. Courtois B, Audebert A, Dardou A, Roques S, Ghneim-Herrera T, Droc G, Frouin J, Rouan L, Gozé E, Kilian A, Ahmadi N, Dingkuhn M (2013) Genome-wide association mapping of root traits in a japonica rice panel. PLoS One 8:e78037PubMedPubMedCentralCrossRefGoogle Scholar
  27. Daly KR, Keyes SD, Masum S, Roose T (2016) Image-based modelling of nutrient movement in and around the rhizosphere. J Exp Bot 67:1059–1070PubMedPubMedCentralCrossRefGoogle Scholar
  28. Downie HF, Adu MO, Schmidt S, Otten W, Dupuy LX, White PJ, Valentine TA (2015) Challenges and opportunities for quantifying roots and rhizosphere interactions through imaging and image analysis. Plant Cell Environ 38:1213–1232PubMedCrossRefPubMedCentralGoogle Scholar
  29. Drouet JL, Pagès L (2007) GRAAL-CN: a model of growth, architecture and allocation for carbon and nitrogen dynamics within whole plants formalised at the organ level. Ecol Model 206:231–249CrossRefGoogle Scholar
  30. Dubey S, Misra P, Dwivedi S, Chatterjee S, Bag SK, Mantri S, Asif MH, Rai A, Kumar S, Shri M, Tripathi P, Tripathi RD, Trivedi PK, Chakrabarty D, Tuli R (2010) Transcriptomic and metabolomic shifts in rice roots in response to Cr (VI) stress. BMC Genomics 11:648PubMedPubMedCentralCrossRefGoogle Scholar
  31. Dubey S, Shri M, Misra P, Lakhwani D, Bag SK, Asif MH, Trivedi PK, Tripathi RD, Chakrabarty D (2014) Heavy metals induce oxidative stress and genome-wide modulation in transcriptome of rice root. Funct Integr Genomics 14:401–417PubMedCrossRefPubMedCentralGoogle Scholar
  32. Dupuy L, Vignes M, Mckenzie BM, White PJ (2010) The dynamics of root meristem distribution in the soil. Plant Cell Environ 33:358–369PubMedCrossRefPubMedCentralGoogle Scholar
  33. Dusserre J, Audebert A, Radanielson A, Chopart JL (2009) Towards a simple generic model for upland rice root length density estimation from root intersections on soil profile. Plant Soil 325:277CrossRefGoogle Scholar
  34. Faget M, Nagel KA, Walter A, Herrera JM, Jahnke S, Schurr U, Temperton VM (2013) Root–root interactions: extending our perspective to be more inclusive of the range of theories in ecology and agriculture using in-vivo analyses. Ann Bot 112:253–266PubMedPubMedCentralCrossRefGoogle Scholar
  35. Fang S, Clark RT, Zheng Y, Iyer-Pascuzzi AS, Weitz JS, Kochian LV, Edelsbrunner H, Liao H, Benfey PN (2013) Genotypic recognition and spatial responses by rice roots. Proc Natl Acad Sci U S A 110:2670–2675PubMedPubMedCentralCrossRefGoogle Scholar
  36. Fang S, Yan X, Liao H (2009) 3D reconstruction and dynamic modeling of root architecture in situ and its application to crop phosphorus research. Plant J 60:1096–1108PubMedCrossRefPubMedCentralGoogle Scholar
  37. Flavel RJ, Guppy CN, Rabbi SM, Young IM (2017) An image processing and analysis tool for identifying and analysing complex plant root systems in 3D soil using non-destructive analysis: Root1. PLoS One 12:e0176433PubMedPubMedCentralCrossRefGoogle Scholar
  38. Fontanili L, Lancilli C, Suzui N, Dendena B, Yin Y-G, Ferri A, Ishii S, Kawachi N, Lucchini G, Fujimaki S, Sacchi GA, Nocito F (2016) Kinetic analysis of zinc/cadmium reciprocal competitions suggests a possible Zn-insensitive pathway for root-to-shoot cadmium translocation in rice. Rice 9:16PubMedPubMedCentralCrossRefGoogle Scholar
  39. Formentin E, Sudiro C, Perin G, Riccadonna S, Barizza E, Baldoni E, Lavezzo E, Stevanato P, Sacchi GA, Fontana P, Toppo S, Morosinotto T, Zottini M, Lo Schiavo F (2018) Transcriptome and cell physiological analyses in different rice cultivars provide new insights into adaptive and salinity stress responses. Front Plant Sci 9:204PubMedPubMedCentralCrossRefGoogle Scholar
  40. French A, Ubeda-Tomás S, Holman TJ, Bennett MJ, Pridmore T (2009) High-throughput quantification of root growth using a novel image-analysis tool. Plant Physiol 150:1784–1795PubMedPubMedCentralCrossRefGoogle Scholar
  41. Fujimaki S, Suzui N, Ishioka NS, Kawachi N, Ito S, Chino M, Nakamura S (2010) Tracing cadmium from culture to spikelet: noninvasive imaging and quantitative characterization of absorption, transport, and accumulation of cadmium in an intact rice plant. Plant Physiol 152:1796–1806PubMedPubMedCentralCrossRefGoogle Scholar
  42. Galkovskyi T, Mileyko Y, Bucksch A, Moore B, Symonova O, Price CA, Topp CN, Iyer-Pascuzzi AS, Zurek PR, Fang S, Harer J, Benfey PN, Weitz JS (2012) GiA Roots: software for the high throughput analysis of plant root system architecture. BMC Plant Biol 12:116PubMedPubMedCentralCrossRefGoogle Scholar
  43. Gamuyao R, Chin JH, Pariasca-Tanaka J, Pesaresi P, Catausan S, Dalid C, Slamet-Loedin I, Tecson-Mendoza EM, Wissuwa M, Heuer S (2012) The protein kinase Pstol1 from traditional rice confers tolerance of phosphorus deficiency. Nature 488:535–539PubMedCrossRefPubMedCentralGoogle Scholar
  44. Garg R, Verma M, Agrawal S, Shankar R, Majee M, Jain M (2014) Deep transcriptome sequencing of wild halophyte rice, Porteresia coarctata, provides novel insights into the salinity and submergence tolerance factors. DNA Res 21:69–84PubMedCrossRefPubMedCentralGoogle Scholar
  45. Gerwitz A, Page ER (1974) An empirical mathematical model to describe plant root systems. J Appl Ecol 11:773–781CrossRefGoogle Scholar
  46. Gho YS, An G, Park HM, Jung KH (2018) A systemic view of phosphate starvation-responsive genes in rice roots to enhance phosphate use efficiency in rice. Plant Biotechnol Rep 12:249–264CrossRefGoogle Scholar
  47. Giri J, Bhosale R, Huang G, Pandey BK, Parker H, Zappala S, Yang J, Dievart A, Bureau C, Ljung K (2018) Rice auxin influx carrier OsAUX1 facilitates root hair elongation in response to low external phosphate. Nat Commun 9:1408PubMedPubMedCentralCrossRefGoogle Scholar
  48. Gowda VR, Henry A, Yamauchi A, Shashidhar HE, Serraj R (2011) Root biology and genetic improvement for drought avoidance in rice. Field Crop Res 122:1–13CrossRefGoogle Scholar
  49. Großkinsky DK, Syaifullah SJ, Roitsch T (2018) Integration of multi-omics techniques and physiological phenotyping within a holistic phenomics approach to study senescence in model and crop plants. J Exp Bot 69:825–844PubMedCrossRefPubMedCentralGoogle Scholar
  50. Groot JJR (1987) Simulation of nitrogen balance in a system of winter wheat and soil. In: Simulation Report CABO-TT, 13th edn. Centre for Agrobiological Research, WageningenGoogle Scholar
  51. Guo L, Chen J, Cui X, Fan B, Lin H (2013) Application of ground penetrating radar for coarse root detection and quantification: a review. Plant Soil 362:1–23CrossRefGoogle Scholar
  52. He Y, Liao H, Yan X (2003) Localized supply of phosphorus induces root morphological and architectural changes of rice in split and stratified soil cultures. Plant Soil 248:247–256CrossRefGoogle Scholar
  53. He F, Liu Q, Zheng L, Cui Y, Shen Z, Zheng L (2015) RNA-seq analysis of rice roots reveals the involvement of post-transcriptional regulation in response to cadmium stress. Front Plant Sci 6:1136PubMedPubMedCentralGoogle Scholar
  54. Heeraman DA, Hopmans JW, Clausnitzer V (1997) Three dimensional imaging of plant roots in situ with X-ray computed tomography. Plant Soil 189:167–179Google Scholar
  55. Hidaka K, Miyoshi Y, Ishii S, Suzui N, Yin Y-G, Kurita K, Nagao K, Araki T, Yasutake D, Kitano M, Kawachi N (2019) Dynamic analysis of photosynthate translocation into strawberry fruits using non-invasive 11C-labeling supported with conventional destructive measurements using 13C-labeling. Front Plant Sci 9:1946PubMedPubMedCentralCrossRefGoogle Scholar
  56. Hsieh PH, Kan CC, Wu HY, Yang HC, Hsieh MH (2018) Early molecular events associated with nitrogen deficiency in rice seedling roots. Sci Rep 8:12207PubMedPubMedCentralCrossRefGoogle Scholar
  57. Huang GT, Ma SL, Bai LP, Zhang L, Ma H, Jia P, Liu J, Zhong M, Guo ZF (2012a) Signal transduction during cold, salt, and drought stresses in plants. Mol Biol Rep 39:969–987PubMedCrossRefPubMedCentralGoogle Scholar
  58. Huang TL, Nguyen QT, Fu SF, Lin CY, Chen YC, Huang HJ (2012b) Transcriptomic changes and signalling pathways induced by arsenic stress in rice roots. Plant Mol Biol 80:587–608PubMedCrossRefPubMedCentralGoogle Scholar
  59. Hubeau M, Mincke J, Vanhove C, Gorel AP, Fayolle A, Epila J, Leroux O, Vandenberghe S, Steppe K (2019) 11C-autoradiographs to image phloem loading. Front For Glob Change 2:20CrossRefGoogle Scholar
  60. Hubeau M, Steppe K (2015) Plant-PET Scans: in vivo mapping of xylem and phloem functioning. Trends Plant Sci 20:676–685PubMedCrossRefPubMedCentralGoogle Scholar
  61. International Rice Genome Sequencing Project (2005) The map based sequence of the rice genome. Nature 436:793–800CrossRefGoogle Scholar
  62. Ishikawa S, Suzui N, Ito-Tanabata S, Ishii S, Igura M, Abe T, Kuramata M, Kawachi N, Fujimaki S (2011) Real-time imaging and analysis of differences in cadmium dynamics in rice cultivars (Oryza sativa) using positron-emitting Cd-107 tracer. BMC Plant Biol 11:172PubMedPubMedCentralCrossRefGoogle Scholar
  63. Ismail AM, Heuer S, Thomson MJ, Wissuwa M (2007) Genetic and genomic approaches to develop rice germplasm for problem soils. Plant Mol Biol 65:547–570PubMedCrossRefPubMedCentralGoogle Scholar
  64. Itoh T, Kawahara Y, Tanaka T (2018) Databases for rice omics studies. In: Sasaki T, Ashikari M (eds) Rice Genomics, Genetics and Breeding. Springer Nature, Singapore, pp 541–554CrossRefGoogle Scholar
  65. Iyer-Pascuzzi AS, Symonova O, Mileyko Y, Hao Y, Belcher H, Harer J, Weitz JS, Benfey PN (2010) Imaging and analysis platform for automatic phenotyping and trait ranking of plant root systems. Plant Physiol 152:1148–1157PubMedPubMedCentralCrossRefGoogle Scholar
  66. Jahnke S, Menzel MI, van Dusschoten D, Roeb GW, Buehler J, Minwuyelet S, Bluemler P, Temperton VM, Hombach T, Streun M, Beer S, Khodaverdi M, Ziemons K, Coenen HH, Schurr U (2009) Combined MRI-PET dissects dynamic changes in plant structures and functions. Plant J 59:634–644PubMedCrossRefPubMedCentralGoogle Scholar
  67. Janardhan P, Hebert M, Ikeuchi K (1998) The space-time map applied to Drosophila embryogenesis. Proc Workshop Biom Image Anal. 144–153.Google Scholar
  68. Jones CA, Kiniry JR (1986) CERES-maize: a simulation model of maize growth and development. Texas A&M University Press, College StationGoogle Scholar
  69. Kano M, Inukai Y, Kitano H, Yamauchi A (2011) Root plasticity as the key root trait for adaptation to various intensities of drought stress in rice. Plant Soil 342:117–128CrossRefGoogle Scholar
  70. Kawachi N, Kikuchi K, Suzui N, Ishii S, Fujimaki S, Ishioka NS, Watabe H (2011b) Imaging of carbon translocation to fruit using carbon-11-labeled carbon dioxide and positron emission tomography. IEEE Trans Nucl Sci 58:395–399CrossRefGoogle Scholar
  71. Kawachi N, Suzui N, Ishii S, Ito S, Ishioka NS, Yamazaki H, Hatano-Iwasaki A, Ogawa K, Fujimaki S (2011a) Real-time whole-plant imaging of 11C translocation using positron-emitting tracer imaging system. Nucl Instrum Methods Phys Res A 648:S317–S320CrossRefGoogle Scholar
  72. Kawachi N, Yin Y-G, Suzui N, Ishii S, Yoshihara T, Watabe H, Yamamoto S, Fujimaki S (2016) Imaging of radiocesium uptake dynamics in a plant body using a newly developed high-resolution gamma camera. J Environ Radioact 151:461–467PubMedCrossRefPubMedCentralGoogle Scholar
  73. Kawasaki S, Borchert C, Deyholos M, Wang H, Brazille S, Kawai K, Galbraith D, Bohnert HJ (2001) Gene expression profiles during the initial phase of salt stress in rice. Plant Cell 13:889–905PubMedPubMedCentralCrossRefGoogle Scholar
  74. Kellermeier F, Chardon F, Amtmann A (2013) Natural variation of Arabidopsis root architecture reveals complementing adaptive strategies to potassium starvation. Plant Physiol 161:1421–1432PubMedPubMedCentralCrossRefGoogle Scholar
  75. Kirk G, Van Du L (1997) Changes in rice root architecture, porosity, and oxygen and proton release under phosphorus deficiency. New Phytol 135:191–200CrossRefGoogle Scholar
  76. Kitomi Y, Itoh J, Uga Y (2018a) Genetic mechanisms involved in the formation of root system architecture. In: Sasaki T, Ashikari M (eds) Rice Genomics. Genetics and Breeding. Springer Nature, Singapore, pp 241–274Google Scholar
  77. Kitomi Y, Kanno N, Kawai S, Mizubayashi T, Fukuoka S, Uga Y (2015) QTLs underlying natural variation of root growth angle among rice cultivars with functional allele of DEEPER ROOTING 1. Rice 8:16PubMedPubMedCentralCrossRefGoogle Scholar
  78. Kitomi Y, Ogawa A, Kitano H, Inukai Y (2008) CRE4 regulates crown root formation through auxin transport in rice. Plant Roots 2:19–28CrossRefGoogle Scholar
  79. Kitomi Y, Nakao E, Kawai S, Kanno N, Ando T, Fukuoka S, Irie K, Uga Y (2018b) Fine mapping of QUICK ROOTING 1 and 2, quantitative trait loci increasing root length in rice. G3 8:727–735PubMedCrossRefPubMedCentralGoogle Scholar
  80. Kiyomiya S, Nakanishi H, Uchida H, Nishiyama S, Tsukada H, Ishioka NS, Watanabe S, Osa A, Mizuniwa C, Ito T, Matsuhashi S, Hashimoto S, Sekine T, Tsuji A, Mori S (2001) Light activates H2 15O flow in rice: detailed monitoring using a positron-emitting tracer imaging system (PETIS). Physiol Plant 113:359–367PubMedCrossRefPubMedCentralGoogle Scholar
  81. Khush GS (2001) Green revolution: the way forward. Nat Rev Genet 2:815–822PubMedCrossRefPubMedCentralGoogle Scholar
  82. Kong X, Zhang M, De Smet I, Ding Z (2014) Designer crops: optimal root system architecture for nutrient acquisition. Trends Biotechnol 32:597–598PubMedCrossRefPubMedCentralGoogle Scholar
  83. Kong W, Zhong H, Gong Z, Fang X, Sun T, Deng X, Li Y (2019) Meta-analysis of salt stress transcriptome responses in different rice genotypes at the seedling stage. Plants 8:64PubMedCentralCrossRefGoogle Scholar
  84. Leitner D, Klepsch S, Bodner G, Schnepf A (2010) A dynamic root system growth model based on L-systems. Plant Soil 332:177–192CrossRefGoogle Scholar
  85. Liu X, Dong X, Xue Q, Leskovar DI, Jifon J, Butnor JR, Marek T (2018) Ground penetrating radar (GPR) detects fine roots of agricultural crops in the field. Plant Soil 423:517–531CrossRefGoogle Scholar
  86. Liu S, Wang J, Wang L, Wang X, Xue Y, Wu P, Shou H (2009) Adventitious root formation in rice requires OsGNOM1 and is mediated by the OsPINs family. Cell Res 19:1110–1119PubMedCrossRefPubMedCentralGoogle Scholar
  87. Lo SF, Yang SY, Chen KT, Hsing YI, Zeevaart JA, Chen LJ, Yu SM (2008) A novel class of gibberellin 2-oxidases control semidwarfism, tillering, and root development in rice. Plant Cell 20:2603–2618PubMedPubMedCentralCrossRefGoogle Scholar
  88. Lobet G, Draye X, Périlleux C (2013) An online database for plant image analysis software tools. Plant Methods 9:38PubMedPubMedCentralCrossRefGoogle Scholar
  89. Lobet G, Pagès L, Draye X (2011) A novel image-analysis toolbox enabling quantitative analysis of root system architecture. Plant Physiol 157:29–39PubMedPubMedCentralCrossRefGoogle Scholar
  90. Lynch J (2013) Steep, cheap and deep: an ideotype to optimize water and N acquisition by maize root systems. Ann Bot 112:347–357PubMedPubMedCentralCrossRefGoogle Scholar
  91. Mai CD, Phung NT, To HT, Gonin M, Hoang GT, Nguyen KL, Do VN, Courtois B, Gantet P (2014) Genes controlling root development in rice. Rice 7:30PubMedPubMedCentralCrossRefGoogle Scholar
  92. Mangrauthia SK, Bhogireddy S, Agarwal S, Prasanth VV, Voleti SR, Neelamraju S, Subrahmanyam D (2017) Genome-wide changes in microRNA expression during short and prolonged heat stress and recovery in contrasting rice cultivars. J Exp Bot 68:2399–2412PubMedPubMedCentralCrossRefGoogle Scholar
  93. Marshall E, Costa LM, Gutierrez-Marcos J (2011) Cysteine-rich peptides (CRPs) mediate diverse aspects of cell-cell communication in plant reproduction and development. J Exp Bot 62:1677–1686PubMedCrossRefPubMedCentralGoogle Scholar
  94. Meng F, Xiang D, Zhu J, Li Y, Mao C (2019) Molecular mechanisms of root development in rice. Rice 12:1PubMedPubMedCentralCrossRefGoogle Scholar
  95. Minh-Thu PT, Hwang DJ, Jeon JS, Nahm BH, Kim YK (2013) Transcriptome analysis of leaf and root of rice seedling to acute dehydration. Rice 6:38PubMedPubMedCentralCrossRefGoogle Scholar
  96. Mishra R, Joshi RK, Zhao K (2018) Genome editing in rice: recent advances, challenges, and future implications. Front Plant Sci 9:1361PubMedPubMedCentralCrossRefGoogle Scholar
  97. Mohanty B, Kitazumi A, Cheung CYM, Lakshmanan M, de Los Reyes BG, Jang IC, Lee DY (2016) Identification of candidate network hubs involved in metabolic adjustments of rice under drought stress by integrating transcriptome data and genome-scale metabolic network. Plant Sci 242:224–239PubMedCrossRefPubMedCentralGoogle Scholar
  98. Morita S, Suga T, Nemoto K (1988) Analysis on root system morphology using a root length density model: II. Examples of analysis on rice root systems. Jpn J Crop Sci 57:755–758CrossRefGoogle Scholar
  99. Moumeni A, Satoh K, Kondoh H, Asano T, Hosaka A, Venuprasad R, Serraj R, Kumar A, Leung H, Kikuchi S (2011) Comparative analysis of root transcriptome profiles of two pairs of drought-tolerant and susceptible rice near-isogenic lines under different drought stress. BMC Plant Biol 11:174PubMedPubMedCentralCrossRefGoogle Scholar
  100. Muller B, Martre P (2019) Plant and crop simulation models: powerful tools to link physiology, genetics, and phenomics. J Exp Bot 70:2339–2344PubMedCrossRefPubMedCentralGoogle Scholar
  101. Müller M, Munné-Bosch S (2015) Ethylene response factors: a key regulatory hub in hormone and stress signaling. Plant Physiol 169:32–41PubMedPubMedCentralCrossRefGoogle Scholar
  102. Muthurajan R, Rahman H, Manoharan M, Ramanathan V, Nallathambi J (2018) Drought responsive transcriptome profiling in roots of contrasting rice genotypes. Indian J Plant Physiol 23:393–407CrossRefGoogle Scholar
  103. Naeem A, French AP, Wells DM, Pridmore TP (2011) High-throughput feature counting and measurement of roots. Bioinformatics 27:1337–1338PubMedCrossRefPubMedCentralGoogle Scholar
  104. Nagel KA, Putz A, Gilmer F, Heinz K, Fischbach A, Pfeifer J, Faget M, Blossfeld S, Ernst M, Dimaki C, Kastenholz B, Kleinert AK, Galinski A, Scharr H, Fiorani F, Schurr U (2012) GROWSCREEN-Rhizo is a novel phenotyping robot enabling simultaneous measurements of root and shoot growth for plants grown in soil-filled rhizotrons. Funct Plant Biol 39:891–904CrossRefGoogle Scholar
  105. Nakamura S, Suzui N, Nagasaka T, Komatsu F, Ishioka NS, Ito-Tanabata S, Kawachi N, Rai H, Hattori H, Chino M, Fujimaki S (2013) Application of glutathione to roots selectively inhibits cadmium transport from roots to shoots in oilseed rape. J Exp Bot 64:1073–1081PubMedPubMedCentralCrossRefGoogle Scholar
  106. Nemoto H, Suga R, Ishihara M, Okutsu Y (1998) Deep rooted rice varieties detected through the observation of root characteristics using the trench method. Breed Sci 48:321–324Google Scholar
  107. Obertello M, Shrivastava S, Katari MS, Coruzzi GM (2015) Cross-species network analysis uncovers conserved nitrogen-regulated network modules in rice. Plant Physiol 168:1830–1843PubMedPubMedCentralCrossRefGoogle Scholar
  108. Ohkubo Y, Tanaka M, Tabata R, Ogawa-Ohnishi M, Matsubayashi Y (2017) Shoot-to-root mobile polypeptides involved in systemic regulation of nitrogen acquisition. Nat Plants 3:17029PubMedCrossRefPubMedCentralGoogle Scholar
  109. O’Leary GJ, Connor DJ, White DH (1985) A simulation model of the development, growth and yield of the wheat crop. Agric Syst 17:1–26CrossRefGoogle Scholar
  110. O’Malley RC, Huang SC, Song L, Lewsey MG, Bartlett A, Nery JR, Galli M, Gallavotti A, Ecker JR (2016) Cistrome and epicistrome features shape the regulatory DNA landscape. Cell 165:1280–1292PubMedPubMedCentralCrossRefGoogle Scholar
  111. Oono Y, Yazawa T, Kawahara Y, Kanamori H, Kobayashi F, Sasaki H, Mori S, Wu J, Handa H, Itoh T, Matsumoto T (2014) Genome-wide transcriptome analysis reveals that cadmium stress signaling controls the expression of genes in drought stress signal pathways in rice. PLoS One 9:e96946PubMedPubMedCentralCrossRefGoogle Scholar
  112. Oono Y, Yazawa T, Kanamori H, Sasaki H, Mori S, Handa H, Matsumoto T (2016) Genome-wide transcriptome analysis of cadmium stress in rice. Biomed Res Int 2016:9739505PubMedPubMedCentralCrossRefGoogle Scholar
  113. Patil S, Srividhya A, Veeraghattapu R, Deborah DAK, Kadambari GM, Nagireddy R, Siddiq EA, Vemireddy LR (2017) Molecular dissection of a genomic region governing root traits associated with drought tolerance employing a combinatorial approach of QTL mapping and RNA-seq in rice. Plant Mol Biol Report 35:457–468CrossRefGoogle Scholar
  114. Pearce G, Moura DS, Stratmann J, Ryan CA Jr (2001) RALF, a 5-kDa ubiquitous polypeptide in plants, arrests root growth and development. Proc Natl Acad Sci U S A 98:12843–12847PubMedPubMedCentralCrossRefGoogle Scholar
  115. Pieruschka R, Schurr U (2019) Plant phenotyping: past, present, and future. Plant Phenomics 2019:7507131CrossRefGoogle Scholar
  116. Piñeros MA, Larson BG, Shaff JE, Schneider DJ, Falcão AX, Yuan L, Clark RT, Craft EJ, Davis TW, Pradier PL, Shaw NM, Assaranurak I, McCouch SR, Sturrock C, Bennett M, Kochian LV (2016) Evolving technologies for growing, imaging and analyzing 3D root system architecture of crop plants. J Integr Plant Biol 58:230–241PubMedCrossRefPubMedCentralGoogle Scholar
  117. Pound MP, Atkinson JA, Townsend AJ, Wilson MH, Griffiths M, Jackson AS, Bulat A, Tzimiropoulos G, Wells DM, Murchie EH, Pridmore TP, French AP (2017) Deep machine learning provides state-of-the-art performance in image-based plant phenotyping. Gigascience 6:1–10PubMedPubMedCentralCrossRefGoogle Scholar
  118. Prusinkiewicz P, Lindenmayer A (1990) The algorithmic beauty of plants. Springer-Verlag, New YorkCrossRefGoogle Scholar
  119. Rabbani MA, Maruyama K, Abe H, Khan MA, Katsura K, Ito Y, Yoshiwara K, Seki M, Shinozaki K, Yamaguchi-Shinozaki K (2003) Monitoring expression profiles of rice genes under cold, drought, and high-salinity stresses and abscisic acid application using cDNA microarray and RNA gel-blot analyses. Plant Physiol 133:1755–1767PubMedPubMedCentralCrossRefGoogle Scholar
  120. Rasband WS (1997-2018) ImageJ. U. S. National Institutes of Health, Bethesda https://imagej.nih.gov/ij/
  121. Razzaque S, Haque T, Elias SM, Rahman MS, Biswas S, Schwartz S, Ismail AM, Walia H, Juenger TE, Seraj ZI (2017) Reproductive stage physiological and transcriptional responses to salinity stress in reciprocal populations derived from tolerant (Horkuch) and susceptible (IR29) rice. Sci Rep 7:46138PubMedPubMedCentralCrossRefGoogle Scholar
  122. Rebouillat J, Dievart A, Verdeil JL, Escoute J, Giese G, Breitler JC, Gantet P, Espeout S, Guiderdoni E, Périn C (2009) Molecular genetics of rice root development. Rice 2:15–34CrossRefGoogle Scholar
  123. Rennie EA, Turgeon R (2009) A comprehensive picture of phloem loading strategies. Proc Natl Acad Sci U S A 106:14162–14167PubMedPubMedCentralCrossRefGoogle Scholar
  124. Robertson MJ, Fukai S, Hammer GL, Ludlow MM (1993) Modelling root growth of grain sorghum using the CERES approach. Field Crop Res 33:113–130CrossRefGoogle Scholar
  125. Rogers ED, Monaenkova D, Mijar M, Nori A, Goldman DI, Benfey PN (2016) X-ray computed tomography reveals the response of root system architecture to soil texture. Plant Physiol 171:2028–2040PubMedPubMedCentralCrossRefGoogle Scholar
  126. Ronzan M, Piacentini D, Fattorini L, Della Rovere F, Eiche E, Riemann F, Altamura MM, Falasca G (2018) Cadmium and arsenic affect root development in Oryza sativa L. negatively interacting with auxin. Environ Exp Bot 151:64–75CrossRefGoogle Scholar
  127. Rowley H, Kanade T (1994) Reconstructing 3D blood vessel shapes from multiple X-ray images. AAAI Workshop Comp Vision Med Image Proc.Google Scholar
  128. Sandhu N, Raman KA, Torres RO, Audebert A, Dardou A, Kumar A, Henry A (2016) Rice root architectural plasticity traits and genetic regions for adaptability to variable cultivation and stress conditions. Plant Physiol 171:2562–2576PubMedPubMedCentralGoogle Scholar
  129. Sasaki A, Ashikari M, Ueguchi-Tanaka M, Itoh H, Nishimura A, Swapan D, Ishiyama K, Saito T, Kobayashi M, Khush GS, Kitano H, Matsuoka M (2002) Green revolution: a mutant gibberellin-synthesis gene in rice. Nature 416:701–702PubMedCrossRefPubMedCentralGoogle Scholar
  130. Schnepf A, Leitner D, Landl M, Lobet G, Mai TH, Morandage S, Shang C, Zörner M, Vanderborght J, Vereecken H (2018) CRootBox: a structural–functional modelling framework for root systems. Ann Bot 121:1033–1053PubMedPubMedCentralCrossRefGoogle Scholar
  131. Sebastian J, Yee MC, Goudinho Viana W, Rellán-Álvarez R, Feldman M, Priest HD, Trontin C, Lee T, Jiang H, Baxter I, Mockler TC, Hochholdinger F, Brutnell TP, Dinneny JR (2016) Grasses suppress shoot-borne roots to conserve water during drought. Proc Natl Acad Sci U S A 113:8861–8866PubMedPubMedCentralCrossRefGoogle Scholar
  132. Shashidhar HE, Henry A, Hardy B (2012) Methodologies for root drought studies in rice. IRRI, PhilippinesGoogle Scholar
  133. Shin SY, Jeong JS, Lim JY, Kim T, Park JH, Kim JK, Shin C (2018) Transcriptomic analyses of rice (Oryza sativa) genes and non-coding RNAs under nitrogen starvation using multiple omics technologies. BMC Genomics 19:532PubMedPubMedCentralCrossRefGoogle Scholar
  134. Sinclair TR, Seligman NAG (1996) Crop modeling: from infancy to maturity. Agron J 88:698–704CrossRefGoogle Scholar
  135. Sinha SK, Sevanthi VAM, Chaudhary S, Tyagi P, Venkadesan S, Rani M, Mandal PK (2018) Transcriptome analysis of two rice varieties contrasting for nitrogen use efficiency under chronic N starvation reveals differences in chloroplast and starch metabolism-related genes. Genes 9:206PubMedCentralCrossRefGoogle Scholar
  136. Song L, Huang SC, Wise A, Castanon R, Nery JR, Chen H, Watanabe M, Thomas J, Bar-Joseph Z, Ecker JR (2016) A transcription factor hierarchy defines an environmental stress response network. Science 354:aag1550PubMedPubMedCentralCrossRefGoogle Scholar
  137. Stapper M (1984) SIMTAG: a simulation model of wheat genotypes. Model documentation. University of New England, Armidale.Google Scholar
  138. Suga T, Nemoto K, Abe J, Morita S (1988) Analysis on root system morphology using a root length density model: I. the model. Jps J Crop Sci 57:749–754CrossRefGoogle Scholar
  139. Sun H, Tao J, Liu S, Huang S, Chen S, Xie X, Yoneyama K, Zhang Y, Xu G (2014) Strigolactones are involved in phosphate- and nitrate-deficiency-induced root development and auxin transport in rice. J Exp Bot 65:6735–6746PubMedPubMedCentralCrossRefGoogle Scholar
  140. Suzui N, Yin Y-G, Ishii S, Sekimoto H, Kawachi N (2017) Visualization of zinc dynamics in intact plants using positron imaging of commercially available 65Zn. Plant Methods 13:40PubMedPubMedCentralCrossRefGoogle Scholar
  141. Symonova O, Topp CN, Edelsbrunner H (2015) DynamicRoots: a software platform for the reconstruction and analysis of growing plant roots. PLoS One 10:e0127657PubMedPubMedCentralCrossRefGoogle Scholar
  142. Tardieu F, Cabrera-Bosquet L, Pridmore T, Bennett M (2017) Plant phenomics, from sensors to knowledge. Curr Biol 27:770–783CrossRefGoogle Scholar
  143. Teramoto S, Kitomi Y, Nishijima R, Takayasu S, Maruyama N, Uga Y (2019) Backhoe-assisted monolith method for plant root phenotyping under upland conditions. Breed Sci 69(3):508–513PubMedPubMedCentralCrossRefGoogle Scholar
  144. Topp CN, Bray AL, Ellis NA, Liu Z (2016) How can we harness quantitative genetic variation in crop root systems for agricultural improvement? J Integr Plant Biol 58:213–225PubMedCrossRefPubMedCentralGoogle Scholar
  145. Topp CN, Iyer-Pascuzzi AS, Anderson JT, Lee CR, Zurek PR, Symonova O, Zheng Y, Bucksch A, Mileyko Y, Galkovskyi T, Moore BT, Harer J, Edelsbrunner H, Mitchell-Olds T, Weitz JS, Benfey PN (2013) 3D phenotyping and quantitative trait locus mapping identify core regions of the rice genome controlling root architecture. Proc Natl Acad Sci U S A 110:E1695–E1704PubMedPubMedCentralCrossRefGoogle Scholar
  146. Trachsel S, Kaeppler SM, Brown KM, Lynch JP (2011) Shovelomics: high throughput phenotyping of maize (Zea mays L.) root architecture in the field. Plant Soil 341:75–87CrossRefGoogle Scholar
  147. Tsukamoto T, Nakanishi H, Uchida H, Watanabe S, Matsuhashi S, Mori S, Nishizawa NK (2009) Fe-52 translocation in barley as monitored by a positron-emitting tracer imaging system (PETIS): evidence for the direct translocation of Fe from roots to young leaves via phloem. Plant Cell Physiol 50:48–57PubMedCrossRefPubMedCentralGoogle Scholar
  148. Tyagi W, Rai M (2017) Root transcriptomes of two acidic soil adapted Indica rice genotypes suggest diverse and complex mechanism of low phosphorus tolerance. Protoplasma 254:725–736PubMedCrossRefPubMedCentralGoogle Scholar
  149. Uga Y (2012) Quantitative measurement of root growth angle by using the basket method. In: Shashidhar HE, Henry A, Hardy B (eds) Methodologies for root drought studies in rice. IRRI, Philippines, pp 22–26Google Scholar
  150. Uga Y, Assaranurak I, Kitomi Y, Larson BG, Craft EJ, Shaff JE, McCouch SR, Kochian LV (2018) Genomic regions responsible for seminal and crown root lengths identified by 2D & 3D root system image analysis. BMC Genomics 19:273PubMedPubMedCentralCrossRefGoogle Scholar
  151. Uga Y, Ebana K, Abe J, Morita S, Okuno K, Yano M (2009) Variation in root morphology and anatomy among accessions of cultivated rice (Oryza sativa L.) with different genetic backgrounds. Breed Sci 59:87–93CrossRefGoogle Scholar
  152. Uga Y, Kitomi Y, Ishikawa S, Yano M (2015) Genetic improvement for root growth angle to enhance crop production. Breed Sci 65:111–109PubMedPubMedCentralCrossRefGoogle Scholar
  153. Uga Y, Okuno K, Yano M (2011) Dro1, a major QTL involved in deep rooting of rice under upland field conditions. J Exp Bot 62:2485–2494PubMedCrossRefPubMedCentralGoogle Scholar
  154. Uga Y, Sugimoto K, Ogawa S, Rane J, Ishitani M, Hara N, Kitomi Y, Inukai Y, Ono K, Kanno N, Inoue H, Takehisa H, Motoyama R, Nagamura Y, Wu J, Matsumoto T, Takai T, Okuno K, Yano M (2013) Control of root system architecture by DEEPER ROOTING 1 increases rice yield under drought conditions. Nat Genet 45:1097–1102PubMedCrossRefPubMedCentralGoogle Scholar
  155. van Dusschoten D, Metzner R, Kochs J, Postma JA, Pflugfelder D, Bühler J, Schurr U, Jahnke S (2016) Quantitative 3D analysis of plant roots growing in soil using magnetic resonance imaging. Plant Physiol 170:1176–1188PubMedPubMedCentralCrossRefGoogle Scholar
  156. van Noordwijk M, Brouwer G, Meijboom F, Oliveira MDRG, Bengough AG (2001) Trench profile techniques and core break methods. In Root Methods. Springer, Berlin, pp 211–233Google Scholar
  157. Vartanian N (1981) Some aspects of structural and functional modifications induced by drought in root systems. Plant Soil 63:83–92CrossRefGoogle Scholar
  158. Wang Q, Mathews AJ, Li K, Wen J, Komarov S, O’Sullivan JA, Tai Y-C (2014) A dedicated high-resolution PET imager for plant sciences. Phys Med Biol 59:5613–5629PubMedCrossRefPubMedCentralGoogle Scholar
  159. Wang D, Pan Y, Zhao X, Zhu L, Fu B, Li Z (2011) Genome-wide temporal-spatial gene expression profiling of drought responsiveness in rice. BMC Genomics 12:149PubMedPubMedCentralCrossRefGoogle Scholar
  160. Wang WS, Zhao XQ, Li M, Huang LY, Xu JL, Zhang F, Cui YR, Fu BY, Li ZK (2016) Complex molecular mechanisms underlying seedling salt tolerance in rice revealed by comparative transcriptome and metabolomic profiling. J Exp Bot 67:405–419PubMedCrossRefPubMedCentralGoogle Scholar
  161. Xu W, Ding G, Yokawa K, Baluška F, Li QF, Liu Y, Shi W, Liang J, Zhang J (2013) An improved agar-plate method for studying root growth and response of Arabidopsis thaliana. Sci Rep 3:1273PubMedPubMedCentralCrossRefGoogle Scholar
  162. Yamazaki H, Suzui N, Yin Y-G, Kawachi N, Ishii S, Shimada H, Fujimaki S (2015) Live-imaging evaluation of the efficacy of elevated CO2 concentration in a closed cultivation system for the improvement of bioproduction in tomato fruits. Plant Biotechnol 32:31–37CrossRefGoogle Scholar
  163. Yang YW, Chen HC, Jen WF, Liu LY, Chang MC (2015a) Comparative transcriptome analysis of shoots and roots of TNG67 and TCN1 rice seedlings under cold stress and following subsequent recovery: insights into metabolic pathways, phytohormones, and transcription factors. PLoS One 10:e0131391PubMedPubMedCentralCrossRefGoogle Scholar
  164. Yang W, Duan L, Chen G, Xiong L, Liu Q (2013) Plant phenomics and high-throughput phenotyping: accelerating rice functional genomics using multidisciplinary technologies. Curr Opin Plant Biol 16:180–187PubMedCrossRefPubMedCentralGoogle Scholar
  165. Yang W, Guo Z, Huang C, Duan L, Chen G, Jiang N, Fang W, Feng H, Xie W, Lian X, Wang G, Luo Q, Zhang Q, Liu Q, Xiong L (2014) Combining high-throughput phenotyping and genome-wide association studies to reveal natural genetic variation in rice. Nat Commun 5:5087PubMedPubMedCentralCrossRefGoogle Scholar
  166. Yang W, Yoon J, Choi H, Fan Y, Chen R, An G (2015b) Transcriptome analysis of nitrogen-starvation-responsive genes in rice. BMC Plant Biol 15:31PubMedPubMedCentralCrossRefGoogle Scholar
  167. Yazdanbakhsh N, Fisahn J (2010) Analysis of Arabidopsis thaliana root growth kinetics with high temporal and spatial resolution. Ann Bot 105:783–791PubMedPubMedCentralCrossRefGoogle Scholar
  168. Yin X, Stam P, Kropff MJ, Schapendonk AH (2003) Crop modeling, QTL mapping, and their complementary role in plant breeding. Agron J 95:90–98CrossRefGoogle Scholar
  169. Yoo YH, Nalini Chandran AK, Park JC, Gho YS, Lee SW, An G, Jung KH (2017) OsPhyB-mediating novel regulatory pathway for drought tolerance in rice root identified by a global RNA-Seq transcriptome analysis of rice genes in response to water deficiencies. Front Plant Sci 8:580PubMedPubMedCentralCrossRefGoogle Scholar
  170. Yoshida H, Takehisa K, Kojima T, Ohno H, Sasaki K, Nakagawa H (2016) Modeling the effects of N application on growth, yield and plant properties associated with the occurrence of chalky grains of rice. Plant Prod Sci 19:30–42CrossRefGoogle Scholar
  171. Yu P, Hochholdinger F, Li C (2019) Plasticity of lateral root branching in maize. Front Plant Sci 10:363PubMedPubMedCentralCrossRefGoogle Scholar
  172. Zhang X, Jiang H, Wang H, Cui J, Wang J, Hu J, Guo L, Qian Q, Xue D (2017b) Transcriptome analysis of rice seedling roots in response to potassium deficiency. Sci Rep 7:5523PubMedPubMedCentralCrossRefGoogle Scholar
  173. Zhang F, Zhou Y, Zhang M, Luo X, Xie J (2017a) Effects of drought stress on global gene expression profile in leaf and root samples of Dongxiang wild rice (Oryza rufipogon). Biosci Rep 37:BSR20160509PubMedPubMedCentralCrossRefGoogle Scholar
  174. Zhao Y, Zhang H, Xu J, Jiang C, Yin Z, Xiong H, Xie J, Wang X, Zhu X, Li Y, Zhao W, Rashid MAR, Li J, Wang W, Fu B, Ye G, Guo Y, Hu Z, Li Z (2018) Loci and natural alleles underlying robust roots and adaptive domestication of upland ecotype rice in aerobic conditions. PLoS Genet 14:e1007521PubMedPubMedCentralCrossRefGoogle Scholar
  175. Zhou Y, Yang P, Cui F, Zhang F, Luo X, Xie J (2016) Transcriptome analysis of salt stress responsiveness in the seedlings of dongxiang wild rice (Oryza rufipogon Griff.). PLoS One 11:e0146242PubMedPubMedCentralCrossRefGoogle Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  1. 1.Institute of Agrobiological SciencesNational Agriculture and Food Research OrganizationTsukubaJapan
  2. 2.Institute of Crop ScienceNational Agriculture and Food Research OrganizationTsukubaJapan
  3. 3.Takasaki Advanced Radiation Research InstituteNational Institutes for Quantum and Radiological Science and TechnologyTakasakiJapan
  4. 4.Department of Frontier Research and DevelopmentKazusa DNA Research InstituteKisarazuJapan

Personalised recommendations