Molecular Breeding

, 39:154 | Cite as

An update on molecular mechanism of disease resistance genes and their application for genetic improvement of rice

  • Miaojing Zhang
  • Shiping Wang
  • Meng YuanEmail author
Part of the following topical collections:
  1. Topical Collection on Rice Functional Genomics


Multiple pathogens cause rice various diseases affecting its yield and quality. Pyramiding resistance genes or quantitative traits loci into rice cultivars to enhance their resistance is an operable and optimal strategy for rice genetic improvement. New technologies and methods accelerate the identification and cloning of the resistance genes from landraces, domesticated and wild rice germplasm accessions. Some of these superior resistance genes have been successfully pyramided into diverse rice cultivars worldwide based on molecular marker-assisted selection. The underlying molecular mechanisms of some resistance genes have been uncovered which support their stacking into rice cultivars in a proper manner. The genetically improved rice lines show broad spectrum and durable resistance to different pathogens, which can greatly contribute to high yield and outstanding quality of rice cultivars. This paper summarizes the cloned major resistance genes, elucidates the underlying molecular mechanisms, and proposes the operable strategies to use these genes for rice genetic improvement.


Oryza sativa Pathogen R gene QTL Disease resistance 


Funding information

This work was supported by grants from the National Natural Science Foundation of China (31822042, 31871946, 31821005).


  1. Andargie M, Li L, Feng A, Zhu X, Li J (2018) Mapping of the quantitative trait locus (QTL) conferring resistance to rice false smut disease. Curr Plant Biol 15:38–43CrossRefGoogle Scholar
  2. Arunakumari K, Durgarani CV, Satturu V, Sarikonda KR, Chittoor PDR, Vutukuri B, Laha GS, Nelli APK, Gattu S, Jamal M, Prasadbabu A, Hajira S, Sundaram RM (2016) Marker-assisted pyramiding of genes conferring resistance against bacterial blight and blast diseases into Indian rice variety MTU1010. Rice Sci 23:306–316CrossRefGoogle Scholar
  3. Ashikawa I, Hayashi N, Yamane H, Kanamori H, Wu J, Matsumoto T, Ono K, Yano M (2008) Two adjacent nucleotide-binding site-leucine-rich repeat class genes are required to confer Pikm-specific rice blast resistance. Genetics 180:2267–2276PubMedPubMedCentralCrossRefGoogle Scholar
  4. Bryan GT, Wu KS, Farrall L, Jia Y, Hershey HP, McAdams SA, Faulk KN, Donaldson GK, Tarchini R, Valent B (2000) A single amino acid difference distinguishes resistant and susceptible alleles of the rice blast resistance gene Pi-ta. Plant Cell 12:2033–2046PubMedPubMedCentralGoogle Scholar
  5. Cao Y, Ding X, Cai M, Zhao J, Lin Y, Li X, Xu C, Wang S (2007) The expression pattern of a rice disease resistance gene Xa3/Xa26 is differentially regulated by the genetic backgrounds and developmental stages that influence its function. Genetics 177:523–533PubMedPubMedCentralCrossRefGoogle Scholar
  6. Cesari S, Thilliez G, Ribot C, Chalvon V, Michel C, Jauneau A, Rivas S, Alaux L, Kanzaki H, Okuyama Y, Morel JB, Fournier E, Tharreau D, Terauchi R, Kroj T (2013) The rice resistance protein pair RGA4/RGA5 recognizes the Magnaporthe oryzae effectors AVR-Pia and AVR1-CO39 by direct binding. Plant Cell 25:1463–1481PubMedPubMedCentralCrossRefGoogle Scholar
  7. Chen X, Shang J, Chen D, Lei C, Zou Y, Zhai W, Liu G, Xu J, Ling Z, Cao G, Ma B, Wang Y, Zhao X, Li S, Zhu L (2006) A B-lectin receptor kinase gene conferring rice blast resistance. Plant J 46:794–804PubMedCrossRefGoogle Scholar
  8. Chen J, Shi Y, Liu W, Chai R, Fu Y, Zhuang J, Wu J (2011) A Pid3 allele from rice cultivar Gumei2 confers resistance to Magnaporthe oryzae. J Genet Genomics 38:209–216PubMedCrossRefGoogle Scholar
  9. Chen X, Zuo S, Schwessinger B, Chern M, Canlas PE, Ruan D, Zhou X, Wang J, Daudi A, Petzold CJ, Heazlewood JL, Ronald PC (2014) An XA21-associated kinase (OsSERK2) regulates immunity mediated by the XA21 and XA3 immune receptors. Mol Plant 7:874–892PubMedPubMedCentralCrossRefGoogle Scholar
  10. Chen J, Peng P, Tian J, He Y, Zhang L, Liu Z, Yin D, Zhang Z (2015) Pike, a rice blast resistance allele consisting of two adjacent NBS-LRR genes, was identified as a novel allele at the Pik locus. Mol Breeding 35:117CrossRefGoogle Scholar
  11. Chen Z, Zhao W, Zhu X, Zou C, Yin J, Chern M, Zhou X, Ying H, Jiang X, Li Y, Liao H, Cheng M, Li W, He M, Wang J, Wang J, Ma B, Wang J, Li S, Zhu L, Chen X (2018) Identification and characterization of rice blast resistance gene Pid4 by a combination of transcriptomic profiling and genome analysis. J Genet Genomics 45:663–672PubMedCrossRefGoogle Scholar
  12. Chu Z, Yuan M, Yao J, Ge X, Yuan B, Xu C, Li X, Fu B, Li Z, Bennetzen JL, Zhang Q, Wang S (2006) Promoter mutations of an essential gene for pollen development result in disease resistance in rice. Genes Dev 20:1250–1255PubMedPubMedCentralCrossRefGoogle Scholar
  13. Das G, Rao GJ (2015) Molecular marker assisted gene stacking for biotic and abiotic stress resistance genes in an elite rice cultivar. Front Plant Sci 6:698PubMedPubMedCentralGoogle Scholar
  14. Das A, Soubam D, Singh PK, Thakur S, Singh NK, Sharma TR (2012) A novel blast resistance gene, Pi54rh cloned from wild species of rice, Oryza rhizomatis confers broad spectrum resistance to Magnaporthe oryzae. Funct Integr Genomics 12:215–228PubMedCrossRefGoogle Scholar
  15. Dean R, Van Kan JA, Pretorius ZA, Hammond-Kosack KE, Di Pietro A, Spanu PD, Rudd JJ, Dickman M, Kahmann R, Ellis J, Foster GD (2012) The top 10 fungal pathogens in molecular plant pathology. Mol Plant Pathol 13:414–430PubMedPubMedCentralCrossRefGoogle Scholar
  16. Deng Y, Zhai K, Xie Z, Yang D, Zhu X, Liu J, Wang X, Qin P, Yang Y, Zhang G, Li Q, Zhang J, Wu S, Milazzo J, Mao B, Wang E, Xie H, Tharreau D, He Z (2017) Epigenetic regulation of antagonistic receptors confers rice blast resistance with yield balance. Science 355:962–965PubMedCrossRefGoogle Scholar
  17. Devanna NB, Vijayan J, Sharma TR (2014) The blast resistance gene Pi54of cloned from Oryza officinalis interacts with Avr-Pi54 through its novel non-LRR domains. PLoS One 9:e104840PubMedPubMedCentralCrossRefGoogle Scholar
  18. Ding X, Jiang L, Liu S, Wang C, Chen L, Cheng Z, Fan Y, Zhou Y, Wan J (2004) QTL analysis for rice stripe disease resistance gene using recombinant inbred lines (RILs) derived from crossing of Kinmaze and DV85. Acta Genet Sin 31:287–292PubMedGoogle Scholar
  19. Fan J, Bai P, Ning Y, Wang J, Shi X, Xiong Y, Zhang K, He F, Zhang C, Wang R, Meng X, Zhou J, Wang M, Shirsekar G, Park CH, Bellizzi M, Liu W, Jeon JS, Xia Y, Shan L, Wang GL (2018) The monocot-specific receptor-like kinase SDS2 controls cell death and immunity in rice. Cell Host Microbe 23:498–510PubMedPubMedCentralCrossRefGoogle Scholar
  20. Fu J, Liu H, Li Y, Yu H, Li X, Xiao J, Wang S (2011) Manipulating broad-spectrum disease resistance by suppressing pathogen-induced auxin accumulation in rice. Plant Physiol 155:589–602PubMedCrossRefGoogle Scholar
  21. Fukuoka S, Saka N, Koga H, Ono K, Shimizu T, Ebana K, Hayashi N, Takahashi A, Hirochika H, Okuno K, Yano M (2009) Loss of function of a proline-containing protein confers durable disease resistance in rice. Science 325:998–1001PubMedCrossRefGoogle Scholar
  22. Fukuoka S, Yamamoto S, Mizobuchi R, Yamanouchi U, Ono K, Kitazawa N, Yasuda N, Fujita Y, Nguyen T, Koizumi S, Sugimoto K, Matsumoto T, Yano M (2014) Multiple functional polymorphism in a signal disease resistance gene in rice enhance durable resistance to blast. Sci Rep 4:4550CrossRefGoogle Scholar
  23. Gao M, Yin X, Yang W, Lam SM, Tong X, Liu J, Wang X, Li Q, Shui G, He Z (2017) GDSL lipases modulate immunity through lipid homeostasis in rice. PLoS Pathog 13:e1006724PubMedPubMedCentralCrossRefGoogle Scholar
  24. Gu K, Yang B, Tian D, Wu L, Wang D, Sreekala C, Yang F, Chu Z, Wang GL, White FF, Yin Z (2005) R gene expression induced by a type-III effector triggers disease resistance in rice. Nature 435:1122–1125PubMedCrossRefGoogle Scholar
  25. Gu K, Tian D, Qiu C, Yin Z (2009) Transcription activator-like type III effector AvrXa27 depends on OsTFIIAγ5 for the activation of Xa27 transcription in rice that triggers disease resistance to Xanthomonas oryzae pv. oryzae. Mol Plant Pathol 10:829–835PubMedPubMedCentralCrossRefGoogle Scholar
  26. Hayano-Saito Y, Saito K, Nakamura S, Kawasaki S, Iwasaki M (2000) Fine physical mapping of the rice stripe resistance gene locus, Stvb-i. Theor Appl Genet 101:59–63CrossRefGoogle Scholar
  27. Hayashi K, Yoshida H (2009) Refunctionalization of the ancient rice blast disease resistance gene Pit by the recruitment of a retrotransposon as a promoter. Plant J 57:413–425PubMedCrossRefGoogle Scholar
  28. Hayashi N, Inoue H, Kato T, Funao T, Shirota T, Kanamori H, Yamane H, Hayano-Saito Y, Matsumoto T, Yano M, Takatsuji H (2010) Durable panicle blast-resistance gene Pb1 encodes an atypical CC-NBS-LRR protein and was generated by acquiring a promoter through local genome duplication. Plant J 64:498–510PubMedCrossRefGoogle Scholar
  29. Hu K, Cao J, Zhang J, Xia F, Ke Y, Zhang H, Xie W, Liu H, Cui Y, Cao Y, Sun X, Xiao J, Li X, Zhang Q, Wang S (2017) Improvement of multiple agronomic traits by a disease resistance gene via cell wall reinforcement. Nature Plants 3:17009PubMedCrossRefGoogle Scholar
  30. Hua L, Wu J, Chen C, Wu W, He X, Lin F, Wang L, Ashikawa I, Matsumoto T, Wang L, Pan Q (2012) The isolation of Pi1, an allele at the Pik locus which confers broad spectrum resistance to rice blast. Theor Appl Genet 125:1047–1055PubMedCrossRefGoogle Scholar
  31. Huang S, Antony G, Li T, Liu B, Obasa K, Yang B, White FF (2016) The broadly effective recessive resistance gene xa5 of rice is a virulence effector-dependent quantitative trait for bacterial blight. Plant J 86:186–194PubMedCrossRefGoogle Scholar
  32. Huang R, Hui S, Zhang M, Li P, Xiao J, Li X, Yuan M, Wang S (2017) A conserved basal transcription factor is required for the function of diverse TAL effectors in multiple plant hosts. Front Plant Sci 8:1919PubMedPubMedCentralCrossRefGoogle Scholar
  33. Hutin M, Sabot F, Ghesquière A, Koebnik R, Szurek B (2015) A knowledge-based molecular screen uncovers a broad-spectrum OsSWEET14 resistance allele to bacterial blight from wild rice. Plant J 84:694–703PubMedCrossRefPubMedCentralGoogle Scholar
  34. Inoue H, Hayashi N, Matsushita A, Xinqiong L, Nakayama A, Sugano S, Jiang CJ, Takatsuji H (2013) Blast resistance of CC-NBS-LRR protein Pb1 is mediated by WRKY45 through protein-protein interaction. Proc Natl Acad Sci USA 110:9577–9582PubMedCrossRefPubMedCentralGoogle Scholar
  35. Inoue H, Nakamura M, Mizubayashi T, Takahashi A, Sugano S, Fukuoka S, Hayashi N (2017) Panicle blast 1 (Pb1) resistance is dependent on at least four QTLs in the rice genome. Rice 10:36PubMedPubMedCentralCrossRefGoogle Scholar
  36. Iyer AS, McCouch SR (2004) The rice bacterial blight resistance gene xa5 encodes a novel form of disease resistance. Mol Plant Microbe Interact 17:1348–1354PubMedCrossRefPubMedCentralGoogle Scholar
  37. Jeung JU, Kim BR, Cho YC, Han SS, Moon HP, Lee YT, Jena KK (2007) A novel gene, Pi40(t), linked to the DNA markers derived from NBS-LRR motifs confers broad spectrum to blast resistance in rice. Theor Appl Genet 115:1163–1177PubMedCrossRefPubMedCentralGoogle Scholar
  38. Ji Z, Ji C, Liu B, Zou L, Chen G, Yang B (2016) Interfering TAL effectors of Xanthomonas oryzae neutralize R-gene-mediated plant disease resistance. Nat Commun 7:13435PubMedPubMedCentralCrossRefGoogle Scholar
  39. Jiang H, Feng Y, Bao L, Li X, Gao G, Zhang Q, Xiao J, Xu C, He Y (2012) Improving blast resistance of Jin 23B and its hybrid rice by marker-assisted gene pyramiding. Mol Breeding 30:1679CrossRefGoogle Scholar
  40. Jiang J, Yang D, Ali J, Mou T (2015) Molecular marker-assisted pyramiding of broad-spectrum disease resistance genes, Pi2 and Xa23, into GZ63-4S, an elite thermo-sensitive genic male-sterile line in rice. Mol Breeding 35:83CrossRefGoogle Scholar
  41. Ke Y, Deng H, Wang S (2017) Advances in understanding broad-spectrum resistance to pathogens in rice. Plant J 90:738–748PubMedCrossRefGoogle Scholar
  42. Kwon T, Lee JH, Park SK, Hwang UH, Cho JH, Kwak DY, Youn YN, Yeo US, Song YC, Nam J, Kang HW, Nam MH, Park DS (2012) Fine mapping and identification of candidate rice genes associated with qSTV11 SG, a major QTL for rice stripe disease resistance. Theor Appl Genet 125:1033–1046PubMedCrossRefGoogle Scholar
  43. Lee SK, Song MY, Seo YS, Kim HK, Ko S, Cao PJ, Suh JP, Yi G, Roh JH, Lee S, An G, Hahn TR, Wang GL, Ronald P, Jeon JS (2009) Rice Pi5-mediated resistance to Magnaporthe oryzae requires the presence of two coiled-coil-nucleotide-binding-leucine-rich repeat genes. Genetics 181:1627–1638PubMedPubMedCentralCrossRefGoogle Scholar
  44. Li Y, Zhang Y, Zhu Z, Zhao L, Wang C (2008) QTL analysis for resistance to rice false smut by using recombinant inbred lines in rice. Chin J Rice Sci 22:472–476Google Scholar
  45. Li W, Zhong S, Li G, Li Q, Mao B, Deng Y, Zhang H, Zeng L, Song F, He Z (2011) Rice RING protein OsBBI1 with E3 ligase activity confers broad-spectrum resistance against Magnaporthe oryzae by modifying the cell wall defence. Cell Res 21:835–848PubMedPubMedCentralCrossRefGoogle Scholar
  46. Li H, Li X, Xiao J, Wing RA, Wang S (2012) Ortholog alleles at Xa3/Xa26 locus confer conserved race-specific resistance against Xanthomonas oryzae in rice. Mol Plant 5:281–290PubMedCrossRefGoogle Scholar
  47. Li A, Pan C, Wu L, Dai Z, Zuo S, Xiao N, Yu L, Li Y, Zhang X, Xue W, Zhang H, Pan X (2013) Identification and fine mapping of qRBSDV-6 MH, a major QTL for resistance to rice black-streaked dwarf virus disease. Mol Breeding 32:1CrossRefGoogle Scholar
  48. Li W, Zhu Z, Chern M, Yin J, Yang C, Ran L, Cheng M, He M, Wang K, Wang J, Zhou X, Zhu X, Chen Z, Wang J, Zhao W, Ma B, Qin P, Chen W, Wang Y, Liu J, Wang W, Wu X, Li P, Wang J, Zhu L, Li S, Chen X (2017) A natural allele of a transcription factor in rice confers broad-spectrum blast resistance. Cell 170:114–126PubMedCrossRefGoogle Scholar
  49. Li W, Chern M, Yin J, Wang J, Chen X (2019) Recent advances in broad-spectrum resistance to the rice blast disease. Curr Opin Plant Biol 50:114–120PubMedCrossRefGoogle Scholar
  50. Lin F, Chen S, Que Z, Wang L, Liu X, Pan Q (2007) The blast resistance gene Pi37 encodes a nucleotide binding site leucine-rich repeat protein and is a member of a resistance gene cluster on rice chromosome 1. Genetics 177:1871–1880PubMedPubMedCentralCrossRefGoogle Scholar
  51. Liu X, Lin F, Wang L, Pan Q (2007) The in silico map-based cloning of Pi36, a rice coiled-coil nucleotide-binding site leucine-rich repeat gene that confers race-specific resistance to the blast fungus. Genetics 176:2541–2549PubMedPubMedCentralCrossRefGoogle Scholar
  52. Liu Q, Yuan M, Zhou Y, Li X, Xiao J, Wang S (2011) A paralog of the MtN3/saliva family recessively confers race-specific resistance to Xanthomonas oryzae in rice. Plant Cell Environ 34:1958–1969PubMedCrossRefGoogle Scholar
  53. Liu W, Liu J, Ning Y, Ding B, Wang X, Wang Z, Wang GL (2013a) Recent progress in understanding PAMP- and effector-triggered immunity against the rice blast fungus Magnaporthe oryzae. Mol Plant 6:605–620PubMedCrossRefGoogle Scholar
  54. Liu Y, Liu B, Zhu X, Yang J, Bordeos A, Wang G, Leach JE, Leung H (2013b) Fine-mapping and molecular marker development for Pi56(t), a NBS-LRR gene conferring broad-spectrum resistance to Magnaporthe oryzae in rice. Theor Appl Genet 126:985–998PubMedCrossRefGoogle Scholar
  55. Liu W, Liu J, Triplett L, Leach JE, Wang GL (2014) Novel insights into rice innate immunity against bacterial and fungal pathogens. Annu Rev Phytopathol 52:213–241PubMedCrossRefGoogle Scholar
  56. Liu Y, Cao Y, Zhang Q, Li X, Wang S (2018) A cytosolic triosephosphate isomerase is a key component in XA3/XA26-mediated resistance. Plant Physiol 178:923–935PubMedPubMedCentralCrossRefGoogle Scholar
  57. Luo Y, Yin Z (2013) Marker-assisted breeding of Thai fragrance rice for semi-dwarf phenotype, submergence tolerance and disease resistance to rice blast and bacterial blight. Mol Breeding 32:709CrossRefGoogle Scholar
  58. Luo Y, Sangha JS, Wang S, Li Z, Yang J, Yin Z (2012) Marker-assisted breeding of Xa4, Xa21 and Xa27 in the restorer lines of hybrid rice for broad-spectrum and enhance disease resistance to bacterial blight. Mol Breeding 30:1601CrossRefGoogle Scholar
  59. Lv Q, Xu X, Shang J, Jiang G, Pang Z, Zhou Z, Wang J, Liu Y, Li T, Li X, Xu J, Cheng Z, Zhao X, Li S, Zhu L (2013) Functional analysis of Pid3-A4, an ortholog of rice blast resistance gene Pid3 revealed by allele mining in common wild rice. Phytopathology 103:594–599PubMedCrossRefGoogle Scholar
  60. Ma J, Lei C, Xu X, Hao K, Wang J, Cheng Z, Ma X, Ma J, Zhou K, Zhang X, Guo X, Wu F, Lin Q, Wang C, Zhai H, Wang H, Wan J (2015) Pi64, encoding a novel CC-NBS-LRR protein, confers resistance to leaf and neck blast in rice. Mol Plant Microbe Interact 28:558–568PubMedCrossRefGoogle Scholar
  61. Mansfield J, Genin S, Magori S, Citovsky V, Sriariyanum M, Ronald P, Dow M, Verdier V, Beer SV, Machado MA, Toth I, Salmond G, Foster GD (2012) Top 10 plant pathogenic bacteria in molecular plant pathology. Mol Plant Pathol 13:614–629PubMedPubMedCentralCrossRefGoogle Scholar
  62. Niño-Liu DO, Ronald PC, Bogdanove AJ (2006) Xanthomonas oryzae pathovars: model pathogens of a model crop. Mol Plant Pathol 7:303–324PubMedCrossRefGoogle Scholar
  63. Okuyama Y, Kanzaki H, Abe A, Yoshida K, Tamiru M, Saitoh H, Fujibe T, Matsumura H, Shenton M, Galam DC, Undan J, Ito A, Sone T, Terauchi R (2011) A multifaceted genomics approach allows the isolation of the rice Pia-blast resistance gene consisting of two adjacent NBS-LRR protein genes. Plant J 66:467–479PubMedCrossRefGoogle Scholar
  64. Ortiz D, de Guillen K, Cesari S, Chalvon V, Gracy J, Padilla A, Kroj T (2017) Recognition of the Magnaporthe oryzae effector AVR-Pia by the decoy domain of the rice NLR immune receptor RGA5. Plant Cell 29:156–168PubMedPubMedCentralCrossRefGoogle Scholar
  65. Pan CH, Li AH, Chen ZX, Wu LB, Dai ZY, Zhang HX, Huang NS, Chen XJ, Zhang YF, Zuo SM, Pan XB (2009) Detection of QTL for resistance to rice black-streaked dwarf viral disease. Acta Agron Sin 35:2213–2217CrossRefGoogle Scholar
  66. Park CH, Shirsekar G, Bellizzi M, Chen S, Songkumarn P, Xie X, Shi X, Ning Y, Zhou B, Suttiviriya P, Wang M, Umemura K, Wang GL (2016) The E3 ligase APIP10 connects the effector AvrPiz-t to the NLR receptor Piz-t in rice. PLoS Pathog 12:e1005529PubMedPubMedCentralCrossRefGoogle Scholar
  67. Pruitt RN, Schwessinger B, Joe A, Thomas N, Liu F, Albert M, Robinson MR, Chan LFG, Luu DD, Chen H, Bahar O, Daudi A, Vleesschauwer DD, Caddell D, Zhang W, Zhao X, Li X, Heazlewood JL, Ruan D, Majumder D, Chern M, Kalbacher H, Midha S, Patil PB, Sonti RV, Petzold CJ, Liu CC, Brodbelt JS, Felix G, Ronald PC (2015) The rice immune receptor XA21 recognizes a tyrosine-sulfated protein from a Gram-negative bacterium. Sci Adv 1:e1500245PubMedPubMedCentralCrossRefGoogle Scholar
  68. Qu S, Liu G, Zhou B, Bellizzi M, Zeng L, Dai L, Han B, Wang GL (2006) The broad-spectrum blast resistance gene Pi9 encodes a nucleotide-binding site-leucine-rich repeat protein and is a member of a multiple family in rice. Genetics 172:1901–1914PubMedPubMedCentralCrossRefGoogle Scholar
  69. Shang J, Tao Y, Chen X, Zou Y, Lei C, Wang J, Li X, Zhao X, Zhang M, Lu Z, Xu J, Cheng Z, Wan J, Zhu L (2009) Identification of a new rice blast resistance gene, Pid3, by genomewide comparison of paired nucleotide-binding site-leucine-rich repeat genes and their pseudogene alleles between the two sequenced rice genomes. Genetics 182:1303–1311PubMedPubMedCentralCrossRefGoogle Scholar
  70. Shimono M, Koga H, Akagi A, Hayashi N, Goto S, Sawada M, Kurihara T, Matsushita A, Sugano S, Jiang CJ, Kaku H, Inoue H, Takatsuji H (2012) Rice WRKY45 plays important roles in fungal and bacterial disease resistance. Mol Plant Pathol 13:83–94PubMedCrossRefGoogle Scholar
  71. Song WY, Wang GL, Chen LL, Kim HS, Pi LY, Holsten T, Gardner J, Wang B, Zhai WX, Zhu LH, Fauquet C, Ronald P (1995) A receptor kinase-like protein encoded by the rice disease resistance gene, Xa21. Science 270:1804–1806PubMedPubMedCentralCrossRefGoogle Scholar
  72. Su J, Wang W, Han J, Chen S, Wang C, Zeng L, Feng A, Yang J, Zhou B, Zhu X (2015) Functional divergence of duplicated genes results in a novel blast resistance gene Pi50 at the Pi2/9 locus. Theor Appl Genet 128:2213–2225PubMedCrossRefGoogle Scholar
  73. Sun X, Cao Y, Yang Z, Xu C, Li X, Wang S (2004) Xa26, a gene conferring resistance to Xanthomonas oryzae pv. oryzae in rice, encodes an LRR receptor kinase-like protein. Plant J 37:517–527PubMedCrossRefGoogle Scholar
  74. Takagi H, Uemura A, Yaegashi H, Tamiru M, Abe A, Mitsuoka C, Utsushi H, Natsume S, Kanzaki H, Matsumura H, Saitoh H, Yoshida K, Cano LM, Kamoun S, Terauchi R (2013) MutMap-Gap: whole-genome resequencing of mutant F2 progeny bulk combined with de novo assembly of gap regions identifies the rice blast gene Pii. New Phytol 200:276–283PubMedCrossRefGoogle Scholar
  75. Takahashi A, Hayashi N, Miyao A, Hirochika H (2010) Unique features of the rice blast resistance Pish locus revealed by large scale retrotransposon-tagging. BMC Plant Biol 10:175PubMedPubMedCentralCrossRefGoogle Scholar
  76. Tan CX, Ji XM, Yang Y, Pan XY, Zuo SM, Zhang YF, Zou JH, Chen ZX, Zhu LH, Pan XB (2005) Identification and marker-assisted selection of two major quantitative genes controlling rice sheath blight resistance in backcross generations. Yi Chuan Xue Bao 32:399–405PubMedGoogle Scholar
  77. Tao Z, Liu H, Qiu D, Zhou Y, Li X, Xu C, Wang S (2009) A pair of allelic WRKY genes play opposite roles in rice-bacteria interactions. Plant Physiol 151:936–948PubMedPubMedCentralCrossRefGoogle Scholar
  78. Tian D, Wang J, Zeng X, Gu K, Qiu C, Yang X, Zhou Z, Goh M, Luo Y, Murata-Hori M, White FF, Yin Z (2014) The rice TAL effector-dependent resistance protein XA10 triggers cell death and calcium depletion in the endoplasmic reticulum. Plant Cell 26:497–515PubMedPubMedCentralCrossRefGoogle Scholar
  79. Triplett LR, Cohen SP, Heffelfinger C, Schmidt CL, Huerta AI, Tekete C, Verdier V, Bogdanove AJ, Leach JE (2016) A resistance locus in the American heirloom rice variety Carolina Gold Select is triggered by TAL effectors with diverse predicted targets and is effective against African strains of Xanthomonas oryzae pv. oryzicola. Plant J 87:472–483PubMedPubMedCentralCrossRefGoogle Scholar
  80. Vasudevan K, Gruissem w, Bhullar NK (2015) Identification of novel alleles of the rice blast resistance gene Pi54. Sci Rep 5:15678.Google Scholar
  81. Wang ZX, Yano M, Yamanouchi U, Iwamoto M, Monna L, Hayasaka H, Katayose Y, Sasaki T (1999) The Pib gene for rice blast resistance belongs to the nucleotide binding and leucine-rich repeat class of plant disease resistance genes. Plant J 19:55–64PubMedCrossRefGoogle Scholar
  82. Wang BX, Jiang L, Chen LM, Lu BG, Wang Q, Li GQ, Fan JW, Chen XN, Zhai HQ, Xu DY, Wan JM (2010) Screening of rice resources against rice black-streaked dwarf virus and mapping of resistant QTL. Acta Agron Sin 36:1258–1264CrossRefGoogle Scholar
  83. Wang B, Jiang L, Zhang Y, Zhang W, Wang Q, Liu S, Liu Y, Cheng X, Zhai H, Wan J (2011) Genetic dissection of the resistance to rice stripe virus present in the indica rice cultivar ‘IR24’. Genome 54:611–619PubMedCrossRefGoogle Scholar
  84. Wang Q, Liu Y, He J, Zheng X, Hu J, Liu Y, Dai H, Zhang Y, Wang B, Wu W, Gao H, Zhang Y, Tao X, Deng H, Yuan D, Jiang L, Zhang X, Guo X, Cheng X, Wu C, Wang H, Yuan L, Wan J (2014) STV11 encodes a sulphotransferase and confers durable resistance to rice stripe virus. Nat Commun 5:4768PubMedPubMedCentralCrossRefGoogle Scholar
  85. Wang C, Zhang X, Fan Y, Gao Y, Zhu Q, Zheng C, Qin T, Li Y, Che J, Zhang M, Yang B, Liu Y, Zhao K (2015) XA23 is an executor R protein and confers broad-spectrum disease resistance in rice. Mol Plant 8:290–302PubMedCrossRefGoogle Scholar
  86. Wang R, Ning Y, Shi X, He F, Zhang C, Fan J, Jiang N, Zhang Y, Zhang T, Hu Y, Bellizzi M, Wang GL (2016) Immunity to rice blast disease by suppression of effector-triggered necrosis. Curr Biol 26:2399–2411PubMedCrossRefGoogle Scholar
  87. Wang J, Zhou L, Shi H, Chern M, Yu H, Yi H, He M, Yin J, Zhu X, Li Y, Li W, Liu J, Wang J, Chen X, Qing H, Wang Y, Liu G, Wang W, Li P, Wu X, Zhu L, Zhou JM, Ronald PC, Li S, Li J, Chen X (2018) A single transcription factor promotes both yield and immunity in rice. Science 361:1026–1028PubMedCrossRefGoogle Scholar
  88. Wing RA, Purugganan MD, Zhang Q (2018) The rice genome revolution: from an ancient grain to Green Super Rice. Nat Rev Genet 19:505–517PubMedCrossRefGoogle Scholar
  89. Wu X, Zuo S, Chen Z, Zhang Y, Zhu J, Ma N, Tang J, Chu C, Pan X (2011) Fine mapping of qSTV11 TQ, a major gene conferring resistance to rice stripe disease. Theor Appl Genet 122:915–923PubMedCrossRefGoogle Scholar
  90. Wu Y, Chen Y, Pan C, Xiao N, Yu L, Li Y, Zhang X, Pan X, Chen X, Liang C, Dai Z, Li A (2017) Development and evaluation of near-isogenic lines with different blast resistance alleles at the Piz locus in japonica rice from the lower region of the Yangze river, China. Plant Dis 101:1283–1291PubMedCrossRefGoogle Scholar
  91. Wu Y, Xiao N, Chen Y, Yu L, Pan C, Li Y, Zhang X, Huang N, Ji H, Dai Z, Chen X, Li A (2019) Comprehensive evaluation of resistance effects of pyramiding lines with different broad-spectrum resistance genes against Magnaporthe oryzae in rice (Oryza sativa L.). Rice 12:11.Google Scholar
  92. Xiang Y, Cao Y, Xu C, Li X, Wang S (2006) Xa3, conferring resistance for rice bacterial blight and encoding a receptor kinase-like protein, is the same as Xa26. Theor Appl Genet 113:1347–1355PubMedCrossRefGoogle Scholar
  93. Xiao N, Wu Y, Pan C, Yu L, Chen Y, Liu G, Li Y, Zhang X, Wang Z, Dai Z, Liang C, Li A (2016) Improving of rice blast resistances in japonica by pyramiding major R genes. Front Plant Sci 7:1918PubMedGoogle Scholar
  94. Xiao N, Wu Y, Wang Z, Li Y, Pan C, Zhang X, Yu L, Liu G, Zhou C, Ji H, Huang N, Jiang M, Dai Z, Li A (2018) Improvement of seedling and panicle blast resistance in Xian rice varieties following Pish introgression. Mol Breeding 38:142CrossRefGoogle Scholar
  95. Xie X, Chen Z, Cao J, Guan H, Lin D, Li C, Lan T, Duan Y, Mao D, Wu W (2014) Toward the positional cloning of qBlsr5a, a QTL underlying resistance to bacterial leaf streak, using overlapping sub-CSSLs in rice. PLoS One 9:e95751PubMedPubMedCentralCrossRefGoogle Scholar
  96. Xie Z, Yan B, Shou J, Tang X, Wang X, Zhai K, Liu J, Li Q, Luo M, Deng Y, He Z (2019) A nucleotide-binding site-leucine-rich repeat receptor pair confers broad-spectrum disease resistance through physical association in rice. Phil Trans R Soc B 374:20180308PubMedCrossRefGoogle Scholar
  97. Xu X, Hayashi N, Wang C, Fukuoka S, Kawasaki S, Takatsuji H, Jiang C (2014) Rice blast resistance gene Pikahei-1(t), a member of a resistance gene cluster on chromosome 4, encodes a nucleotide-binding site and leucine-rich repeat protein. Mol Breeding 34:691CrossRefGoogle Scholar
  98. Yoshimura S, Yamanouchi U, Katayose Y, Toki S, Wang ZX, Kono I, Kurata N, Yano M, Iwata N, Sasaki T (1998) Expression of Xa1, a bacterial blight-resistance gene in rice, is induced by bacterial inoculation. Proc Natl Acad Sci USA 95:1663–1668PubMedCrossRefGoogle Scholar
  99. Yuan B, Zhai C, Wang W, Zeng X, Xu X, Hu H, Lin F, Wang L, Pan Q (2011) The Pik-p resistance to Magnaporthe oryzae in rice is mediated by a pair of closely linked CC-NBS-LRR genes. Theor Appl Genet 122:1017–1028PubMedCrossRefGoogle Scholar
  100. Yuan M, Ke Y, Huang R, Ma L, Yang Z, Chu Z, Xiao J, Li X, Wang S (2016) A host basal transcription factor is a key component for infection of rice by TALE-carrying bacteria. Elife 5:e19605PubMedPubMedCentralCrossRefGoogle Scholar
  101. Zhai C, Lin F, Dong Z, He X, Yuan B, Zeng X, Wang L, Pan Q (2011) The isolation and characterization of Pik, a rice blast resistance gene which emerged after rice domestication. New Phytol 189:321–334PubMedCrossRefGoogle Scholar
  102. Zhai C, Zhang Y, Yao N, Lin F, Liu Z, Dong Z, Wang L, Pan Q (2014) Function and interaction of the coupled genes responsible for Pik-h encodes rice blast resistance. PLoS One 9:e98067PubMedPubMedCentralCrossRefGoogle Scholar
  103. Zhai K, Deng Y, Liang D, Tang J, Liu J, Yan B, Yin X, Lin H, Chen F, Yang D, Xie Z, Liu JY, Li Q, Zhang L, He Z (2019) RRM transcription factors interact with NLRs and regulate broad-spectrum blast resistance in rice. Mol Cell 74:996–1009PubMedCrossRefGoogle Scholar
  104. Zhang YX, Wang Q, Jiang L, Liu LL, Wang BX, Shen YY, Cheng XN, Wan JM (2011) Fine mapping of qSTV11 KAS, a major QTL for rice stripe disease resistance. Theor Appl Genet 122:1591–1604PubMedPubMedCentralCrossRefGoogle Scholar
  105. Zhao H, Wang X, Jia Y, Minkenberg B, Wheatley M, Fan J, Jia MH, Famoso A, Edwards JD, Wamishe Y, Valent B, Wang GL, Yang Y (2018) The rice blast resistance gene Ptr encodes an atypical protein required for broad-spectrum disease resistance. Nat Commun 9:2039PubMedPubMedCentralCrossRefGoogle Scholar
  106. Zhou B, Qu S, Liu G, Dolan M, Sakai H, Lu G, Bellizzi M, Wang GL (2006) The eight amino-acid differences within three leucine-rich repeats between Pi2 and Piz-t resistance proteins determine the resistance specificity to Magnaporthe grisea. Mol Plant Microbe Interact 19:1216–1228PubMedCrossRefGoogle Scholar
  107. Zhou Y, Xie X, Zhang F, Wang S, Liu X, Zhu L, Xu J, Gao Y, Li Z (2014) Detection of quantitative resistance loci associated with resistance to rice false smut (Ustilaginoidea virens) using introgression lines. Plant Pathol 63:365–372CrossRefGoogle Scholar
  108. Zhou T, Du L, Wang L, Wang Y, Gao C, Lan Y, Sun F, Fan Y, Wang G, Zhou Y (2015) Genetic analysis and molecular mapping of QTLs for resistance to rice black-streaked dwarf disease in rice. Sci Rep 5:10509PubMedPubMedCentralCrossRefGoogle Scholar
  109. Zhou X, Liao H, Chern M, Yin J, Chen Y, Wang J, Zhu X, Chen Z, Yuan C, Zhao W, Wang J, Li W, He M, Ma B, Wang J, Qin P, Chen W, Wang Y, Liu J, Qian Y, Wang W, Wu X, Li P, Zhu L, Li S, Ronald PC, Chen X (2018) Loss of function of a rice TPR-domain RNA-binding protein confers broad-spectrum disease resistance. Proc Natl Acad Sci USA 115:3174–3179PubMedCrossRefGoogle Scholar
  110. Zhu Y, Chen H, Fan J, Wang Y, Li Y, Chen J, Fan J, Yang S, Hu L, Leung H, Mew TW, Teng PS, Wang Z, Mundt CC (2000) Genetic diversity and disease control in rice. Nature 406:718–722PubMedCrossRefGoogle Scholar
  111. Zuo S, Yin Y, Pan C, Chen Z, Zhang Y, Gu S, Zhu L, Pan X (2013) Fine mapping of qSB-11 LE, the QTL that confers partial resistance to rice sheath blight. Theor Appl Genet 126:1257–1272PubMedCrossRefGoogle Scholar
  112. Zuo SM, Zhang YF, Yin YJ, Li GZ, Zhang GW, Wang H, Chen ZX, Pan XB (2014) Fine-mapping of qSB-9 TQ, a gene conferring major quantitative resistance to rice sheath blight. Mol Breeding 34:2191CrossRefGoogle Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  1. 1.National Key Laboratory of Crop Genetic Improvement, National Center of Plant Gene Research (Wuhan)Huazhong Agricultural UniversityWuhanChina

Personalised recommendations