Molecular Breeding

, 39:143 | Cite as

Molecular cytogenetic identification of two wheat–Thinopyrum ponticum substitution lines conferring stripe rust resistance

  • Siwen Wang
  • Changyou Wang
  • Yanzhen Wang
  • Yajuan Wang
  • Chunhuan Chen
  • Wanquan JiEmail author


Distant hybridizations are important for developing common wheat germplasm. Thinopyrum ponticum (2n = 10x = 70), which is a wild relative of wheat, has numerous advantages for enhancing the tolerance of plants to biotic and abiotic stresses. ES-11 and ES-12 are two stable lines derived from a cross between the Triticum aestivumTh. ponticum partial amphiploid line Xiaoyan784 (2n = 8x = 56) and the wheat Abbondanza nullisomic lines (2n = 40) involving consecutive self-crosses and cytological marker-assisted selection. Lines ES-11 and ES-12 were characterized by a cytogenetic analysis, a sequential fluorescence in situ hybridization (FISH)–genomic in situ hybridization (GISH), and a multicolor GISH (mc-GISH) combined with an analysis of functional molecular markers. Moreover, their agronomic traits and disease resistance were evaluated. The cytogenetic results suggested that ES-11 and ES-12 contained 42 chromosomes. In ES-12, wheat chromosome 3D was replaced by a pair of Th. ponticum 3St chromosomes for a genome composition of 14A + 14B + 12D + 2(3St). In ES-11, wheat chromosome 3B and 4D were replaced by chromosomes 3St and 4 J, respectively, for a genome composition of 14A + 12B + 12D + 2(3St) +2(4J). The detected recombination between chromosomes 3St and 4J and the structural variation of chromosome 2A were due to the introduction of two pairs of Th. ponticum chromosomes. Additionally, ES-11 and ES-12 were resistant to stripe rust at the seedling and adult stages. Thus, the highly disease-resistant wheat–Th. ponticum disomic substitution line (ES-12) and double substitution line (ES-11) are potentially useful germplasms for breeding disease-resistant wheat lines.


Thinopyrum ponticum Substitution line mc-GISH Genomic composition variations Stripe rust resistance 



This work was supported by the National Key Research and Development Program of China (grant no. 2016YFD0102000), and the Zhongying Tang Breeding Foundation of Northwest A&F University. We are grateful for their financial support.

Supplementary material

11032_2019_1053_MOESM1_ESM.docx (23 kb)
ESM 1 (DOCX 23 kb)


  1. Bariana HS, McIntosh RA (1993) Cytogenetic studies in wheat. XV. Location of rust resistance genes in VPM1 and their genetic linkage with other disease resistance genes in chromosome 2A. Genome 36:476–482. CrossRefPubMedGoogle Scholar
  2. Chen GL, Zheng Q, Bao YG, Liu SB, Wang HG, Li XF (2012) Molecular cytogenetic identification of a novel dwarf wheat line with introgressed Thinopyrum ponticum chromatin. J Biosci 37:149–155. CrossRefPubMedGoogle Scholar
  3. Ciferri R (1955) The first interspecific wheat hybrids. J Heredity 46:81–83. CrossRefGoogle Scholar
  4. Du P, Zhuang LF, Wang YZ, Yuan L, Wang Q, Wang DR, Dawadondup TLJ, Shen J, Xu HB, Zhao H, Chu CG, Qi ZJ (2017) Development of oligonucleotides and multiplex probes for quick and accurate identification of wheat and Thinopyrum bessarabicum chromosomes. Genome 60:93–103. CrossRefPubMedGoogle Scholar
  5. Fu SL, Lv ZL, Qi B, Guo X, Li J, Liu B, Han F (2012) Molecular cytogenetic characterization of wheat–Thinopyrum elongatum addition, substitution and translocation lines with a novel source of resistance to wheat Fusarium head blight. J Genet Genomics 39:103–110. CrossRefPubMedGoogle Scholar
  6. Grewal S, Yang C, Edwards SH, Scholefield D, Ashling S, Burridge AJ, King IP, King J (2018) Characterisation of Thinopyrum bessarabicum chromosomes through genome-wide introgressions into wheat. Theor Appl Genet 131:389–406. CrossRefPubMedGoogle Scholar
  7. Guo J, Yu XC, Yin HY, Liu GJ, Li AF, Wang HW, Kong LR (2016) Phylogenetic relationships of Thinopyrum and Triticum species revealed by SCoT and CDDP markers. Plant Syst Evol 302:1301–1309. CrossRefGoogle Scholar
  8. Han FP, Liu B, Fedak G, Liu ZH (2004) Genomic constitution and variation in five partial amphiploids of wheat–Thinopyrum intermedium as revealed by GISH, multicolor GISH and seed storage protein analysis. Theor Appl Genet 109:1070–1076. CrossRefPubMedGoogle Scholar
  9. He F, Xing PY, Bao YG, Ren MJ, Liu SB, Wang YH, Li XF, Wang HG (2017) Chromosome pairing in hybrid progeny between Triticum aestivum and Elytrigia elongata. Front Plant Sci 8:2161. CrossRefPubMedPubMedCentralGoogle Scholar
  10. Huang XY, Zhu MQ, Zhuang LF, Zhang SY, Wang JJ, Chen XJ, Wang DR, Chen JY, Bao YG, Guo J, Zhang JL, Feng YG, Chu CG, Du P, Qi ZJ, Wang HG, Chen PD (2018) Structural chromosome rearrangements and polymorphisms identified in Chinese wheat cultivars by high-resolution multiplex oligonucleotide FISH. Theor Appl Genet 131:1967–1986. CrossRefPubMedGoogle Scholar
  11. Kong LN, Song XY, Xiao J, Sun HJ, Dai KL, Lan CX, Singh P, Yuan CX, Zhang SZ, Singh R, Wang HY, Wang XE (2018) Development and characterization of a complete set of Triticum aestivumRoegneria ciliaris disomic addition lines. Theor Appl Genet 131:1793–1806. CrossRefPubMedGoogle Scholar
  12. Kruppa K, Molnár-Láng M (2016) Simultaneous visualization of different genomes (J, JSt and St) in a Thinopyrum intermedium × Thinopyrum ponticum synthetic hybrid (Poaceae) and in its parental species by multicolour genomic in situ hybridization (mcGISH). Comp Cytogenet 10:283–293. CrossRefPubMedPubMedCentralGoogle Scholar
  13. Kruppa K, Turkosi E, Mayer M, Toth V, Vida G, Szakacs E, Molnár-Láng M (2016) McGISH identification and phenotypic description of leaf rust and yellow rust resistant partial amphiploids originating from a wheat × Thinopyrum synthetic hybrid cross. J Appl Genet 57:427–437. CrossRefPubMedPubMedCentralGoogle Scholar
  14. Li ZS, Li B, Tong YP (2008) The contribution of distant hybridization with decaploid Agropyron elongatum to wheat improvement in China. J Genet Genomics 35:451–456. CrossRefPubMedGoogle Scholar
  15. Li AL, Geng SF, Zhang LQ, Liu DC, Mao L (2015a) Making the bread: insights from newly synthesized allohexaploid wheat. Mol Plant 8:847–859. CrossRefPubMedGoogle Scholar
  16. Li H, Guo XX, Wang CY, Ji WQ (2015b) Spontaneous and divergent hexaploid triticales derived from common wheat x rye by complete elimination of D-genome chromosomes. PLoS One 10:e0120421. CrossRefPubMedPubMedCentralGoogle Scholar
  17. Linc G, Sepsi A, Molnár-Láng M (2012) A FISH karyotype to study chromosome polymorphisms for the Elytrigia elongata E genome. Cytogenet Genome Res 136:138–144. CrossRefPubMedGoogle Scholar
  18. Liu B, Xu CM, Zhao N, Qi B, Kimatu JN, Pang JS, Han FP (2009) Rapid genomic changes in polyploid wheat and related species: implications for genome evolution and genetic improvement. J Genet Genomics 36:519–528. CrossRefPubMedGoogle Scholar
  19. Liu G, Jia LJ, Lu LH, Qin DD, Zhang JP, Guan PF, Ni ZF, Yao YY, Sun QX, Peng HR (2014) Mapping QTLs of yield-related traits using RIL population derived from common wheat and Tibetan semi-wild wheat. Theor Appl Genet 127:2415–2432. CrossRefPubMedGoogle Scholar
  20. Liu SW, Li F, Kong LN, Sun Y, Qin LM, Chen SY, Cui HF, Huang YH, Xia GM (2015) Genetic and epigenetic changes in somatic hybrid introgression lines between wheat and tall wheatgrass. Genetics 199:1035–1045. CrossRefPubMedPubMedCentralGoogle Scholar
  21. Niu Z, Klindworth DL, Yu G, Friesen TL, Chao S, Jin Y, Cai X, Ohm JB, Rasmussen JB, Xu SS (2014) Development and characterization of wheat lines carrying stem rust resistance gene Sr43 derived from Thinopyrum ponticum. Theor Appl Genet 127:969–980. CrossRefPubMedGoogle Scholar
  22. Pei YR, Cui Y, Zhang YP, Wang HG, Bao YG, Li XF (2018) Molecular cytogenetic identification of three rust-resistant wheat–Thinopyrum ponticum partial amphiploids. Mol Cytogenet 11:27–27. CrossRefPubMedPubMedCentralGoogle Scholar
  23. Sepsi A, Molnar I, Szalay D, Molnár-Láng M (2008) Characterization of a leaf rust-resistant wheat–Thinopyrum ponticum partial amphiploid BE-1, using sequential multicolor GISH and FISH. Theor Appl Genet 116:825–834. CrossRefPubMedGoogle Scholar
  24. Tang ZX, Yang ZJ, Fu SL (2014) Oligonucleotides replacing the roles of repetitive sequences pAs1, pSc119.2, pTa-535, pTa71, CCS1, and pAWRC.1 for FISH analysis. J Appl Genet 55:313–318. CrossRefPubMedGoogle Scholar
  25. Wang RRC, Lu BR (2014) Biosystematics and evolutionary relationships of perennial Triticeae species revealed by genomic analyses. J Syst Evol 52:697–705. CrossRefGoogle Scholar
  26. Wang YH, Wang HW (2016) Characterization of three novel wheat–Thinopyrum intermedium addition lines with novel storage protein subunits and resistance to both powdery mildew and stripe rust. J Genet Genomics 43:45–48. CrossRefPubMedGoogle Scholar
  27. Wang YJ, Quan W, Peng NN, Wang CY, Yang XF, Liu XL, Zhang H, Chen CH, Ji WQ (2016) Molecular cytogenetic identification of a wheat–Aegilops geniculata Roth 7Mg disomic addition line with powdery mildew resistance. Mol Breed 36:1–10. CrossRefGoogle Scholar
  28. Yang ZJ, Li GR, Chang ZJ, Zhou JP, Ren ZL (2006) Characterization of a partial amphiploid between Triticum aestivum cv. Chinese Spring and Thinopyrum intermedium ssp trichophorum. Euphytica 149:11–17. CrossRefGoogle Scholar
  29. Yang XF, Wang CY, Chen CH, Zhang H, Tian ZR, Li X, Wang YJ, Ji WQ (2014) Chromosome constitution and origin analysis in three derivatives of Triticum aestivumLeymus mollis by molecular cytogenetic identification. Genome 57:583–591. CrossRefPubMedGoogle Scholar
  30. Zhan HX, Li GR, Zhang XJ, Li X, Guo HJ, Gong WP, Jia JQ, Qiao LY, Ren YK, Yang ZJ, Chang ZJ (2014) Chromosomal location and comparative genomics analysis of powdery mildew resistance gene Pm51 in a putative wheat–Thinopyrum ponticum introgression line. PLoS One 9:e113455. CrossRefPubMedPubMedCentralGoogle Scholar
  31. Zhang XY, Dong YS, Wang RRC (1996) Characterization of genomes and chromosomes in partial amphiploids of the hybrid Triticum aestivum x Thinopyrum ponticum by in situ hybridization, isozyme analysis, and RAPD. Genome 39:1062–1071. CrossRefPubMedGoogle Scholar
  32. Zhang P, Li WL, Fellers J, Friebe B, Gill BS (2004) BAC-FISH in wheat identifies chromosome landmarks consisting of different types of transposable elements. Chromosoma 112:288–299. CrossRefPubMedGoogle Scholar
  33. Zhang JP, Zhang P, Hewitt T, Li JB, Dundas I, Schnippenkoetter W, Hoxha S, Chen CH, Park R, Lagudah E (2019) A strategy for identifying markers linked with stem rust resistance in wheat harbouring an alien chromosome introgression from a non-sequenced genome. Theor Appl Genet 132:125–135. CrossRefPubMedGoogle Scholar
  34. Zheng Q, Lv ZL, Niu ZX, Li B, Li HW, Xu SS, Han FP, Li ZS (2014) Molecular cytogenetic characterization and stem rust resistance of five wheat–Thinopyrum ponticum partial amphiploids. J Genet Genomics 41:591–599. CrossRefPubMedGoogle Scholar
  35. Zheng Q, Luo QL, Niu ZX, Li HW, Li B, Xu SS, Li ZS (2015) Variation in chromosome constitution of the Xiaoyan series partial Amphiploids and its relationship to stripe rust and stem rust resistance. J Genet Genomics 42:657–660. CrossRefPubMedGoogle Scholar
  36. Zhu C, Wang YZ, Chen CH, Wang CY, Zhang AC, Peng NN, Wang YJ, Zhang H, Liu XL, Ji WQ (2017) Molecular cytogenetic identification of a wheat–Thinopyrum ponticum substitution line with stripe rust resistance. Genome 60:860–867. CrossRefPubMedGoogle Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  • Siwen Wang
    • 1
  • Changyou Wang
    • 1
    • 2
  • Yanzhen Wang
    • 1
  • Yajuan Wang
    • 1
    • 2
  • Chunhuan Chen
    • 1
    • 2
  • Wanquan Ji
    • 1
    • 2
    Email author
  1. 1.College of AgronomyNorthwest A&F UniversityYanglingPeople’s Republic of China
  2. 2.Shaanxi Research Station of Crop Gene Resources and Germplasm EnhancementMinistry of AgricultureYanglingPeople’s Republic of China

Personalised recommendations