Molecular Breeding

, 39:121 | Cite as

Mapping malting quality and yield characteristics in a north American two-rowed malting barley × wild barley advanced backcross population

  • Liana Nice
  • Yadong Huang
  • Brian J. Steffenson
  • Laszlo Gyenis
  • Paul Schwarz
  • Kevin P. Smith
  • Gary J. MuehlbauerEmail author


Due to the stringent quality requirements imposed by the US malting barley industry, barley breeders have been reluctant to introduce exotic germplasm into cultivar development programs. To determine whether wild barley (Hordeum vulgare ssp. spontaneum) contains favorable alleles for yield and malting quality characteristics, we mapped quantitative trait loci (QTL) for heading date, height, lodging, yield, and nine malting parameters important to the malting and brewing industry. Traits were mapped in a wild x cultivated barley BC2-derived advanced backcross mapping population. Harrington, the recurrent parent, is a North American two-rowed malting barley cultivar, and OUH602, the donor parent, is a wild barley accession that exhibits resistance to multiple barley diseases. The 98 derived lines were grown in replicated field trials at St. Paul and Crookston, MN in 2009–2011. One to four QTL were identified for each trait, for a total of 36 QTL. Trangressive segregants for increased yield were identified and four lines had higher yield than Harrington across all environments; however, for yield QTL the OUH602 alleles decreased the trait value. Wild barley alleles had both positive and negative effects on the malting traits of diastatic power, free amino nitrogen, and soluble protein. Combined with the previously identified QTL associated with resistance to fungal diseases, this population represents a rich resource for barley breeding. To facilitate future breeding and genetics studies with this population, a set of pre-introgression lines composed of 28 BC2-derived and 6 BC3-derived lines were identified that collectively contain introgressions across the entire OUH602 genome.


Wild barley Malting quality Introgression QTL Yield 



The authors thank Shane Heinen for greenhouse support, and Ed Schiefelbein and Guillermo Velasquez for field plot management. We thank Dr. Shiaoman Chao (USDA-ARS, Fargo, ND) for SNP genotyping and Mr. John Barr for assistance with micro-malting and malt analyses.

Author contribution statement

GJM, KPS, and BJS designed the study. LN and PS collected experimental data. LN and YH analyzed the data. LN drafted the manuscript. All authors revised and approved the manuscript.

Funding information

The study was funded by a grant to GJM from the USDA-NIFA (2011-68002-30029)

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Supplementary material

11032_2019_1030_MOESM1_ESM.docx (652 kb)
Figure S1 (DOCX 651 kb)
11032_2019_1030_MOESM2_ESM.docx (105 kb)
Figure S2 (DOCX 105 kb)
11032_2019_1030_MOESM3_ESM.docx (276 kb)
Figure S3 (DOCX 276 kb)
11032_2019_1030_MOESM4_ESM.xlsx (11 kb)
Table S1 (XLSX 10 kb)
11032_2019_1030_MOESM5_ESM.docx (14 kb)
Table S2 (DOCX 13 kb)
11032_2019_1030_MOESM6_ESM.xlsx (22 kb)
Table S3 (XLSX 21 kb)
11032_2019_1030_MOESM7_ESM.docx (13 kb)
Table S4 (DOCX 12 kb)
11032_2019_1030_MOESM8_ESM.xlsx (12 kb)
Table S5 (XLSX 12 kb)
11032_2019_1030_MOESM9_ESM.xlsx (13 kb)
Table S6 (XLSX 13 kb)


  1. Azhaguvel P, Komatsuda T (2007) A phylogenetic analysis based on nucleotide sequence of a marker linked to the brittle rachis locus indicates a diphyletic origin of barley. Ann Bot 100:1009–1015CrossRefGoogle Scholar
  2. Blake T, Blake VC, Bowman JGP, Abdel-Haleem H (2011) In: Ullrich SE (ed) BarleyBarley feed uses and quality improvement. Wiley-Blackwell, Chichester, pp 522–531Google Scholar
  3. Broman KW, Wu H, Sen S, Churchill GA (2003) R/QTL: QTL mapping in experimental crosses. Bioinformatics 19:889–890CrossRefGoogle Scholar
  4. Butler DG, Cullis BR, Gilmour AR, Gogel BJ (2009) ASReml-R reference manual. Accessed 15 July 2019
  5. Condón F, Gustus C, Rasmusson DC, Smith KP (2008) Effect of advanced cycle breeding on genetic diversity in barley breeding germplasm. Crop Sci 48:1027CrossRefGoogle Scholar
  6. Condón F, Rasmusson DC, Schiefelbein E, Velasquez G, Smith KP (2009) Effect of advanced cycle breeding on genetic gain and phenotypic diversity in barley breeding germplasm. Crop Sci 49:1751–1761CrossRefGoogle Scholar
  7. Ellis RP, Forster BP, Robinson D, Handley LL, Gordon DC, Russell JR, Powell W (2000) Wild barley: a source of genes for crop improvement in the 21st century? J Exp Bot 51:9–17CrossRefGoogle Scholar
  8. Fetch TG, Steffenson BJ, Nevo E (2003) Diversity and sources of multiple disease resistance in Hordeum spontaneum. Plant Dis 87:1439–1448CrossRefGoogle Scholar
  9. Fox GP, Panozzo JF, Li CD, Lance RCM, Inkerman PA, Henry RJ (2003) Molecular basis of barley quality. Aust J Agric Res 54:1081–1101CrossRefGoogle Scholar
  10. Fu Y-B, Somers DJ (2009) Genome-wide reduction of genetic diversity in wheat breeding. Crop Sci 49:161CrossRefGoogle Scholar
  11. Gyenis L, Yun SJ, Smith KP, Steffenson BJ, Bossolini E, Sanguineti MC, Muehlbauer GJ (2007) Genetic architecture of quantitative trait loci associated with morphological and agronomic trait differences in a wild by cultivated barley cross. Genome 50:714–723CrossRefGoogle Scholar
  12. Herzig P, Maurer A, Draba V, Sharma R, Draicchio F, Bull H, Milne L, Thomas WTB, Flavell AJ, Pillen K (2018) Contrasting genetic regulation of plant development in wild barley grown in two European environments revealed by nested association mapping. J Exp Bot 69:1517–1531CrossRefGoogle Scholar
  13. Huang Y, Haas M, Heinen S, Steffenson BJ, Smith KP, Muehlbauer GJ (2018) QTL mapping of Fusarium head blight and correlated agromorphological traits in an elite barley cultivar Rasmusson. Front Plant Sci 9:1260CrossRefGoogle Scholar
  14. Karababa E, Schwarz PB, Horsley RD (1993) Effect of kiln schedule on micromalt quality parameters. J Am Soc Brew Chem 51:163–167Google Scholar
  15. Lakew B, Henry RJ, Ceccarelli S, Grando S, Eglinton J, Baum M (2013) Genetic analysis and phenotypic associations for drought tolerance in Hordeum spontaneum introgression lines using SSR and SNP markers. Euphytica 189:9–29CrossRefGoogle Scholar
  16. Li JZ, Huang XQ, Heinrichs F, Ganal MW, Röder MS (2005) Analysis of QTLs for yield, yield components, and malting quality in a BC3-DH population of spring barley. Theor Appl Genet 110:356–363CrossRefGoogle Scholar
  17. Marquez-Cedillo LA, Hayes PM, Jones BL, Kleinhofs A, Legge WG, Rossnagel BG, Sato K, Ullrich SE, Wesenberg DM, North American Barley Genome Mapping Project (2000) QTL analysis of malting quality in barley based on the doubled-haploid progeny of two elite North American varieties representing different germplasm groups. Theor Appl Genet 101:173–184CrossRefGoogle Scholar
  18. Mather DE, Tinker NA, LaBerge DE, Edney M, Jones BL, Rossnagel BG, Legge WG, Briggs KG, Irvine RG, Falk DE, Kasha KJ (1997) Regions of the genome that affect grain and malt quality in a North American two-row barley cross. Crop Sci 37:544CrossRefGoogle Scholar
  19. Matus I, Corey A, Filichkin T, Hayes PM, Vales MI, Kling J, Riera-Lizarazu O, Sato K, Powell W, Waugh R (2003) Development and characterization of recombinant chromosome substitution lines (RCSLs) using Hordeum vulgare subsp. spontaneum as a source of donor alleles in a Hordeum vulgare subsp. vulgare background. Genome 46:1010–1023CrossRefGoogle Scholar
  20. Mohammadi M, Blake TK, Budde AD, Chao S, Hayes PM, Horsley RD, Obert DE, Ullrich SE, Smith KP (2015) A genome-wide association study of malting quality across eight U.S. barley breeding programs. Theor Appl Genet 128:705–721CrossRefGoogle Scholar
  21. Muñoz-Amatriaín M, Xiong Y, Schmitt MR, Bilgic H, Budde AD, Chao S, Smith KP, Muehlbauer GJ (2010) Transcriptome analysis of a barley breeding program examines gene expression diversity and reveals target genes for malting quality improvement. BMC Genomics 11:653CrossRefGoogle Scholar
  22. Muñoz-Amatriaín M, Moscou MJ, Bhat PR, Svensson JT, Bartoš J, Suchánková P, Šimková H, Endo TR, Fenton RD, Lonardi S, Castillo AM, Chao S, Cistué L, Cuesta-Marcos A, Forrest KL, Hayden MJ, Hayes PM, Horsley RD, Makoto K, Moody D, Sato K, Vallés MP, Wulff BBH, Muehlbauer GJ, Doležel J, Close TJ (2011) An improved consensus linkage map of barley based on flow-sorted chromosomes and single nucleotide polymorphism markers. Plant Genome 4:238CrossRefGoogle Scholar
  23. Nice LM, Steffenson BJ, Brown-Guedira GL, Akhunov ED, Liu C, Kono TJY, Morrell PL, Blake TK, Horsley RD, Smith KP, Muehlbauer GJ (2016) Development and genetic characterization of an advanced backcross-nested association mapping (AB-NAM) population of wild x cultivated barley. Genetics 203:1453–1467CrossRefGoogle Scholar
  24. Pourkheirandish M, Komatsuda T (2007) The importance of barley genetics and domestication in a global perspective. Ann Bot 100:999–1008CrossRefGoogle Scholar
  25. Pourkheirandish M, Hensel G, Kilian B, Senthil N, Chen G, Sameri M, Azhaguvel P, Sakuma S, Dhanagond S, Sharma R, Mascher M, Himmelbach A, Gottwald S, Nair Sudha K, Tagiri A, Yukuhiro F, Nagamura Y, Kanamori H, Matsumoto T, Willcox G, Middleton Christopher P, Wicker T, Walther A, Waugh R, Fincher Geoffrey B, Stein N, Kumlehn J, Sato K, Komatsuda T (2015) Evolution of the grain dispersal system in barley. Cell 162:527–539CrossRefGoogle Scholar
  26. Rasmusson DC, Phillips RL (1997) Plant breeding progress and genetic diversity from de novo variation and elevated epistasis. Crop Sci 37:303CrossRefGoogle Scholar
  27. Sallam AH, Tyagi P, Brown-Guedira G, Muehlbauer GJ, Hulse A, Steffenson BJ (2017) Genome-wide association mapping of stem rust resistance in Hordeum vulgare subsp. spontaneum. G3 7:3491CrossRefGoogle Scholar
  28. Schmalenbach I, Körber N, Pillen K (2008) Selecting a set of wild barley introgression lines and verification of QTL effects for resistance to powdery mildew and leaf rust. Theor Appl Genet 117:1093–1106CrossRefGoogle Scholar
  29. Schmalenbach I, March TJ, Bringezu T, Waugh R, Pillen K (2011) High-resolution genotyping of wild barley introgression lines and fine-mapping of the threshability locus thresh-1 using the Illumina GoldenGate assay. G3 1:187–196CrossRefGoogle Scholar
  30. Shannon LM, Yandell BS, Broman K (2013) Users guide for new BCsFt tools for R/qtl. Accessed 15 July 2019
  31. Steffenson BJ, Olivera P, Roy JK, Jin Y, Smith KP, Muehlbauer GJ (2007) A walk on the wild side: mining wild wheat and barley collections for rust resistance genes. Aust J Agric Res 58:532CrossRefGoogle Scholar
  32. Tanksley SD, Nelson JC (1996) Advanced backcross QTL analysis: a method for the simultaneous discovery and transfer of valuable QTLs from unadapted germplasm into elite breeding lines. Theor Appl Genet 92:191–203CrossRefGoogle Scholar
  33. Turner A, Beales J, Faure S, Dunford RP, Laurie DA (2005) The pseudo-response regulator Ppd-H1 provides adaptation to photoperiod in barley. Science 310:1031–1034CrossRefGoogle Scholar
  34. von Korff M, Wang H, Léon J, Pillen K (2005) AB-QTL analysis in spring barley. I. Detection of resistance genes against powdery mildew, leaf rust and scald introgressed from wild barley. Theor Appl Genet 111(3):583–590CrossRefGoogle Scholar
  35. von Korff M, Wang H, Léon J, Pillen K (2006) AB-QTL analysis in spring barley: II. Detection of favourable exotic alleles for agronomic traits introgressed from wild barley (H. vulgare ssp. spontaneum). Theor Appl Genet 112:1221–1231CrossRefGoogle Scholar
  36. von Korff M, Wang H, Léon J, Pillen K (2008) AB-QTL analysis in spring barley: III. Identification of exotic alleles for the improvement of malting quality in spring barley (H. vulgare ssp. spontaneum). Mol Breed 21:81–93CrossRefGoogle Scholar
  37. von Korff M, Léon J, Pillen K (2010) Detection of epistatic interactions between exotic alleles introgressed from wild barley (H. vulgare ssp. spontaneum). Theor Appl Genet 121:1455–1464CrossRefGoogle Scholar
  38. Wang G, Schmalenbach I, von Korff M, Léon J, Kilian B, Rode J, Pillen K (2010) Association of barley photoperiod and vernalization genes with QTLs for flowering time and agronomic traits in a BC2DH population and a set of wild barley introgression lines. Theor Appl Genet 120:1559–1574CrossRefGoogle Scholar
  39. Yun SJ, Gyenis L, Hayes PM, Matus I, Smith KP, Steffenson BJ, Muehlbauer GJ (2005) Quantitative trait loci for multiple disease resistance in wild barley. Crop Sci 45:2563CrossRefGoogle Scholar
  40. Yun SJ, Gyenis L, Bossolini E, Hayes PM, Matus I, Smith KP, Steffenson BJ, Tuberosa R, Muehlbauer GJ (2006) Validation of quantitative trait loci for multiple disease resistance in barley using advanced backcross lines developed with a wild barley. Crop Sci 46:1179CrossRefGoogle Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  1. 1.Department of Agronomy and Plant GeneticsUniversity of MinnesotaSt. PaulUSA
  2. 2.Department of Plant PathologyUniversity of MinnesotaSt. PaulUSA
  3. 3.Department of BiochemistryWestern UniversityLondonCanada
  4. 4.Department of Plant SciencesNorth Dakota State UniversityFargoUSA
  5. 5.Department of Plant and Microbial BiologyUniversity of MinnesotaSt. PaulUSA

Personalised recommendations