Molecular Breeding

, 39:78 | Cite as

Uncovering the genetic basis of carotenoid variations in maize kernels using two segregating populations

  • Jing Xu
  • Xiuyi Fu
  • Ye Cai
  • Min Wang
  • Shutu Xu
  • Jiansheng Li
  • Xiaohong YangEmail author


Carotenoids, which serve as precursors of vitamin A and antioxidants, play important roles in human health. Breeding to increase carotenoid levels in cereal grains is an economically feasible way to address nutritional deficiency. Here, we performed quantitative trait–locus (QTL) mapping of 5 primary and 12 derived carotenoid-related traits in maize kernels in two segregating populations: Dan340 × K22 (KD) and K22 × CI7 (KC) F2:3/F2:4. In total, 185 putative QTLs in 32 genomic regions were identified for 17 carotenoid-related traits. For each trait, the number of QTLs per population ranged from 2 to 10, with a maximum of 4 QTLs explaining over 15% of the phenotypic variation. These findings suggest that a simple genetic basis underlies the variations in carotenoid-related traits in biparental populations. Moreover, additive effects mainly contribute to the genetic basis of these variations. We constructed a trait–locus network based on locus–locus linkage and locus–trait association information to explain the genetic basis of correlations among carotenoids and identified eight major common loci that control at least five traits. Overall, these findings enrich our understanding of the genetic basis of carotenoid accumulation in maize kernels, laying the foundation for improving multiple carotenoid traits by pyramiding desirable QTLs.


Maize Carotenoids QTL Trait–locus network 



This research was supported by the National Key Research and Development Program of China (2016YFD0101803) and the National Natural Science Foundation of China (31361140362).

Author contributions

X.Y. designed the research. C.Y. and S.X. performed experiments; X.J., F.X., and W.M. performed the data analysis; L.J. assisted with the experiments; X.J. and Y.X. wrote the manuscript. All the authors read and approved the final manuscript.

Supplementary material

11032_2019_982_MOESM1_ESM.pdf (223 kb)
ESM 1 (PDF 222 kb)
11032_2019_982_MOESM2_ESM.xlsx (78 kb)
ESM 2 (XLSX 77.7 kb)


  1. Adebanjo AB (2018) Elevated carotenoids in staple crops: the biosynthesis, challenges and measures for target delivery. J Genet Eng Biotechnol 16:553–562. CrossRefGoogle Scholar
  2. Babu R, Rojas NP, Gao S, Yan J, Pixley K (2013) Validation of the effects of molecular marker polymorphisms in LcyE and CrtRB1 on provitamin A concentrations for 26 tropical maize populations. Theor Appl Genet 126:389–399. CrossRefPubMedGoogle Scholar
  3. Bai L, Kim EH, DellaPenna D, Brutnell TP (2009) Novel lycopene epsilon cyclase activities in maize revealed through perturbation of carotenoid biosynthesis. Plant J 59:588–599. CrossRefPubMedGoogle Scholar
  4. Bouchet S, Bertin P, Presterl T, Jamin P, Coubriche D, Gouesnard B, Laborde J, Charcosset A (2017) Association mapping for phenology and plant architecture in maize shows higher power for developmental traits compared with growth influenced traits. Heredity 118:249–259. CrossRefPubMedGoogle Scholar
  5. Bouvier F, Rahier A, Camara B (2005) Biogenesis, molecular regulation and function of plant isoprenoids. Prog Lipid Res 44:357–429. CrossRefPubMedGoogle Scholar
  6. Burt AJ, Grainger CM, Smid MP, Shelp BJ, Lee EA (2011) Allele mining of exotic maize germplasm to enhance macular carotenoids. Crop Sci 51:991–1004.
  7. Cardoso WS, Peas MCD, Galvao JCC, Rios SD, Guimaraes PED, Schaffert RE, Borem A (2009) Variability of maize genotypes for grain carotenoid composition. Pesqui Agropecu Bras 44:164–172. CrossRefGoogle Scholar
  8. Cazzonelli CI, Pogson BJ (2010) Source to sink: regulation of carotenoid biosynthesis in plants. Trends Plant Sci 15:266–274. CrossRefGoogle Scholar
  9. Chander S, Guo YQ, Yang XH, Zhang J, Lu XQ, Yan JB, Song TM, Rocheford TR, Li JS (2008a) Using molecular markers to identify two major loci controlling carotenoid contents in maize grain. Theor Appl Genet 116:223–233. CrossRefPubMedGoogle Scholar
  10. Chander S, Meng YJ, Zhang YR, Yan JB, Li JS (2008b) Comparison of nutritional traits variability in selected eighty-seven inbreds from Chinese maize (Zea mays L.) germplasm. J Agric Food Chem 56:6506–6511. CrossRefPubMedGoogle Scholar
  11. Chen Y, Li JK, Fan KJ, Du YC, Ren ZJ, Xu J, Zheng J, Liu YJ, Fu JJ, Ren DT, Wang GY (2017) Mutations in the maize zeta-carotene desaturase gene lead to viviparous kernel. PLoS One 12:e0174270. CrossRefPubMedPubMedCentralGoogle Scholar
  12. Churchill GA, Doerge RW (1994) Empirical threshold values for quantitative trait mapping. Genetics 138:963–971PubMedPubMedCentralGoogle Scholar
  13. Combs GF Jr, McClung JP (2016) The vitamins: fundamental aspects in nutrition and health. Academic press. Publishers, San DiegoGoogle Scholar
  14. Cordoba E, Porta H, Arroyo A, Román CS, Medina L, Rodríguez-Concepción M, León P (2011) Functional characterization of the three genes encoding 1-deoxy-D-xylulose 5-phosphate synthase in maize. J Exp Bot 62:2023–2038. CrossRefPubMedGoogle Scholar
  15. Cunningham FX Jr, Pogson B, Sun Z, McDonald KA, DellaPenna D, Gantt E (1996) Functional analysis of the beta and epsilon lycopene cyclase enzymes of Arabidopsis reveals a mechanism for control of cyclic carotenoid formation. Plant Cell 8:1613–1626. CrossRefPubMedPubMedCentralGoogle Scholar
  16. Cunningham FX, Gantt E (1998) Genes and enzymes of carotenoid biosynthesis in plants. Annu Rev Plant Physiol Plant Mol Biol 49:557–583. CrossRefPubMedGoogle Scholar
  17. Cuttriss AJ, Cazzonelli CI, Wurtzel ET, Pogson BJ (2011) Carotenoids. Adv Bot Res 58:1–36. CrossRefGoogle Scholar
  18. da Silva Messias R, Galli V, dos Anjos Silva SD, Rombaldi CV (2014) Carotenoid biosynthetic and catabolic pathways: gene expression and carotenoid content in grains of maize landraces. Nutrients 6:546–563. CrossRefPubMedGoogle Scholar
  19. DellaPenna D, Pogson BJ (2006) Vitamin synthesis in plants: tocopherols and carotenoids. Annu Rev Plant Biol 57:711–738. CrossRefPubMedGoogle Scholar
  20. DeBlasio SL, Rebelo AR, Parks K, Gray SM, Heck MC (2018) Disruption of chloroplast function through downregulation of phytoene desaturase enhances the systemic accumulation of an aphid-borne, phloem-restricted virus. Mol Plant-Microbe Interact 31:1095–1110. CrossRefPubMedGoogle Scholar
  21. Egesel CO, Wong JC, Lambert RJ, Rocheford TR (2003) Combining ability of maize inbreds for carotenoid and tocopherols. Crop Sci 43:818–823. CrossRefGoogle Scholar
  22. Fu ZY, Chai YC, Zhou Y, Yang XH, Warburton ML, Xu ST, Cai Y, Zhang DL, Li JS, Yan JB (2013) Natural variation in the sequence of PSY1 and frequency of favorable polymorphisms among tropical and temperate maize germplasm. Theor Appl Genet 126:923–935. CrossRefPubMedGoogle Scholar
  23. Gao Q, Yue GD, Li WQ, Wang JY, Xu JH, Yin Y (2012) Recent progress using high-throughput sequencing technologies in plant molecular breeding. J Integr Plant Biol 54:215–227. CrossRefPubMedGoogle Scholar
  24. Giuliano G (2017) Provitamin A biofortification of crop plants: a gold rush with many miners. Curr Opin Biotechnol 44:169–180. CrossRefPubMedGoogle Scholar
  25. Gonzalez-Jorge S, Mehrshahi P, Magallanes-Lundback M, Lipka AE, Angelovici R, Gore MA, DellaPenna D (2016) ZEAXANTHIN EPOXIDASE activity potentiates carotenoid degradation in maturing Arabidopsis seed. Plant Physiol 171:1837–1751. CrossRefPubMedPubMedCentralGoogle Scholar
  26. Harjes CE, Rocheford TR, Bai L, Brutnell TP, Kandianis CB, Sowinski SG, Stapleton AE, Vallabhaneni R, Williams M, Wurtzel ET, Yan JB, Buckler ES (2008) Natural genetic variation in lycopene epsilon cyclase tapped for maize biofortification. Science 319:330–333. CrossRefPubMedPubMedCentralGoogle Scholar
  27. Huang XH, Feng Q, Qian Q, Zhao Q, Wang L, Wang AH, Guan JP, Fan DL, Huang T, Dong GJ, Sang T, Han B (2009) High-throughput genotyping by whole-genome resequencing. Genome Res 19:1068–1076. CrossRefPubMedPubMedCentralGoogle Scholar
  28. Hulshof PJM, Schuil TK, West CE, Hollman PCH (2007) Quick screening of maize kernels for provitamin A content. J Food Compos Anal 20:655–661. CrossRefGoogle Scholar
  29. Hunter CT, Saunders GW, Magallanes-Lundback M, Christensen SA, Willett D, Stinard PS, Li QB, Lee K, DellaPenna D, Koch KE (2018) Maize w3 disrupts homogentisate solanesyl transferase (ZmHst) and reveals a plastoquinone-9 independent path for phytoene desaturation and tocopherol accumulation in kernels. Plant J 93:799–813. CrossRefPubMedGoogle Scholar
  30. Kandianis CB, Stevens R, Liu WP, Palacios N, Montgomery K, Pixley K, White WS, Rocheford T (2013) Genetic architecture controlling variation in grain carotenoid composition and concentrations in two maize populations. Theor Appl Genet 126:2879–2895. CrossRefPubMedPubMedCentralGoogle Scholar
  31. Kao CH, Zeng ZB, Teasdale RD (1999) Multiple interval mapping for quantitative trait loci. Genetics 152:1203–1216. CrossRefPubMedPubMedCentralGoogle Scholar
  32. Kurilich AC, Juvik JA (1999) Quantification of carotenoid and tocopherol antioxidants in Zea mays. J Agric Food Chem 47:1948–1955. CrossRefPubMedGoogle Scholar
  33. Lander ES, Botstein D (1989) Mapping Mendelian factors underlying quantitative traits using RFLP linkage maps. Genetics 121:185–199PubMedPubMedCentralGoogle Scholar
  34. Li WY, Yang ZX, Yao JY, Li JS, Song WB, Yang XH (2018) Cellulose synthase-like D1 controls organ size in maize. BMC Plant Biol 18(239):239. CrossRefPubMedPubMedCentralGoogle Scholar
  35. Li ZH, Matthews PD, Burr B, Wurtzel ET (1996) Cloning and characterization of a maize cDNA encoding phytoene desaturase, an enzyme of the carotenoid biosynthetic pathway. Plant Mol Biol 30:269–279. CrossRefPubMedGoogle Scholar
  36. Liu L, Jeffers D, Zhang YD, Ding ML, Chen W, Kang MS, Fan XM (2015) Introgression of the crtRB1 gene into quality protein maize inbred lines using molecular markers. Mol Breed 35:154–166. CrossRefPubMedPubMedCentralGoogle Scholar
  37. Lobo I (2008) Pleiotropy: one gene can affect multiple traits. Nat Educ 1:10Google Scholar
  38. Ma L, Dou HL, Wu YQ, Huang YM, Huang YB, Xu XR, Zou ZY, Lin XM (2012) Lutein and zeaxanthin intake and the risk of age-related macular degeneration: a systematic review and meta-analysis. Br J Nutr 107:350–359. CrossRefPubMedGoogle Scholar
  39. Matthews PD, Luo RB, Wurtzel ET (2003) Maize phytoene desaturase and ζ-carotene desaturase catalyse a poly-Z desaturation pathway: implications for genetic engineering of carotenoid content among cereal crops. J Exp Bot 54:2215–2230. CrossRefPubMedGoogle Scholar
  40. Moise AR, Al-Babili S, Wurtzel ET (2014) Mechanistic aspects of carotenoid biosynthesis. Chem Rev 114:164–193. CrossRefPubMedGoogle Scholar
  41. Muthusamy V, Hossain F, Thirunavukkarasu N, Choudhary M, Saha S, Bhat JS, Prasanna BM, Gupta HS (2014) Development of β-carotene rich maize hybrids through marker-assisted introgression of β-carotene hydroxylase allele. PLoS One 9:e113583. CrossRefPubMedPubMedCentralGoogle Scholar
  42. Nisar N, Li L, Lu S, Khin NC, Pogson BJ (2015) Carotenoid metabolism in plants. Mol Plant 8:68–82. CrossRefPubMedGoogle Scholar
  43. Orawan J, Fu XY, Xu J, Chander S, Li JS, Yang XH (2017) Genetic dissection of carotenoids in maize kernels using high-density single nucleotide polymorphism markers in a recombinant inbred line population. Crop J 5:63–72. CrossRefGoogle Scholar
  44. Owens BF, Lipka AE, Magallanes-Lundback M, Tiede T, Diepenbrock CH, Kandianis CB, Kim E, Cepela J, Mateos-Hernandez M, Buell CR, Buckler ES, DellaPenna D, Gore MA, Rocheford T (2014) A foundation for provitamin A biofortification of maize: genome-wide association and genomic prediction models of carotenoid levels. Genetics 198:1699–1716. CrossRefPubMedPubMedCentralGoogle Scholar
  45. Palaisa KA, Morgante M, Williams M, Rafalski A (2003) Contrasting effects of selection on sequence diversity and linkage disequilibrium at two phytoene synthase loci. Plant Cell 15:1795–1806. CrossRefPubMedPubMedCentralGoogle Scholar
  46. Pan QC, Xu YC, Li K, Peng Y, Zhan W, Li WQ, Li L, Yan JB (2017) The genetic basis of plant architecture in 10 maize recombinant inbred line populations. Plant Physiol 175:858–873. CrossRefPubMedPubMedCentralGoogle Scholar
  47. Pan XY, Zheng HY, Zhao JY, Xu YJ, Li XX (2016) ZmCCD7/ZpCCD7 encodes a carotenoid cleavage dioxygenase mediating shoot branching. Planta 243:1407–1418. CrossRefPubMedGoogle Scholar
  48. Park H, Kreunen SS, Cuttriss AJ, DellaPenna D, Pogson BJ (2002) Identification of the carotenoid isomerase provides insight into carotenoid biosynthesis, prolamellar body formation, and photomorphogenesis. Plant Cell 14:321–332. CrossRefPubMedPubMedCentralGoogle Scholar
  49. Pixley K, Rojas NP, Babu R, Mutale R, Surles R, Simpungwe E (2013) Biofortification of maize with provitamin A carotenoids. Humana Press. Publishers, Totowa, NJ, pp 271–292Google Scholar
  50. Ruiz-Sola MA, Rodríguez-Concepción M (2012) Carotenoid biosynthesis in Arabidopsis: a colorful pathway. Arabidopsis Book 10:e0158. CrossRefPubMedPubMedCentralGoogle Scholar
  51. Smoot ME, Ono K, Ruscheinski J, Wang PL, Ideker T (2008) Cytoscape 2.8: new features for data integration and network visualization. Bioinformatics 27:431–432. CrossRefGoogle Scholar
  52. Sun Z, Gantt E, Cunningham FX Jr (1996) Cloning and functional analysis of the beta-carotene hydroxylase of Arabidopsis thaliana. J Biol Chem 271:24349–24352CrossRefGoogle Scholar
  53. Sun Z, Hans J, Walter MH, Matusova R, Beekwilder J, Verstappen FWA, Ming Z, van Echtelt E, Strack D, Bisseling T, Bouwmeester HJ (2008) Cloning and characterisation of a maize carotenoid cleavage dioxygenase (ZmCCD1) and its involvement in the biosynthesis of apocarotenoids with various roles in mutualistic and parasitic interactions. Planta 228:789–801. CrossRefPubMedGoogle Scholar
  54. Suwarno WB, Pixley KV, Palacios-Rojas N, Kaeppler SM, Babu R (2015) Genome-wide association analysis reveals new targets for carotenoid biofortification in maize. Theor Appl Genet 128:851–864. CrossRefPubMedPubMedCentralGoogle Scholar
  55. Tan BC, Guan JC, Ding S, Wu S, Saunders JW, Koch KE, McCarty DR (2017) Structure and origin of the White Cap locus and its role in evolution of grain color in maize. Genetics 206:135–150. CrossRefPubMedPubMedCentralGoogle Scholar
  56. Vallabhaneni R, Gallagher CE, Licciardello N, Cuttriss AJ, Quinlan RF, Wurtzel FT (2009) Metabolite sorting of a germplasm collection reveals the hydroxylase3 locus as a new target for maize provitamin a biofortification. Plant Physiol 151:1635–1645. CrossRefPubMedPubMedCentralGoogle Scholar
  57. Van Os H, Andrzejewski S, Bakker E, Barrena I, Bryan GJ, Caromel B, Ghareeb B, Isidore E, de Jong W, van Koert P, Lefebvre V, Milbourne D, Ritter E, van der Voort JNAMR, Rousselle-Bourgeois F, van Vliet J, Waugh R, Visser RGF, Bakker J, van Eck HJ (2006) Construction of a 10,000-marker ultradense genetic recombination map of potato: providing a framework for accelerated gene isolation and a genomewide physical map. Genetics 173:1075–1087. CrossRefPubMedPubMedCentralGoogle Scholar
  58. Von Lintig J (2012a) Metabolism of carotenoids and retinoids related to vision. J Biol Chem 287:1627–1634. CrossRefGoogle Scholar
  59. Von Lintig J (2012b) Provitamin A metabolism and functions in mammalian biology. Am J Clin Nutr 96:1234S–1244S. CrossRefGoogle Scholar
  60. Wang S, Basten CJ, Zeng ZB (2012) Windows QTL Cartographer 2, 5th edn. Department of Statistics, North Carolina State University. Publishers, Raleigh, NCGoogle Scholar
  61. Weber EJ (1987) Carotenoid and tocopherols of corn grain determined by HPLC. J Am Oil Chem Soc 64:1129–1134. CrossRefGoogle Scholar
  62. Wong JC, Lambert RJ, Wurtzel ET, Rocheford TR (2004) QTL and candidate genes phytoene synthase and ζ-carotene desaturase associated with the accumulation of carotenoids in maize. Theor Appl Genet 108:349–359. CrossRefPubMedGoogle Scholar
  63. Wurtzel ET, Cuttriss A, Vallabhaneni R (2012) Maize provitamin a carotenoids, current resources, and future metabolic engineering challenges. Front Plant Sci 3(29).
  64. Xie WB, Feng Q, Yu HH, Huang XH, Zhao Q, Xing YZ, Yu SB, Han B, Zhang QF (2010) Parent-independent genotyping for constructing an ultrahigh-density linkage map based on population sequencing. Proc Natl Acad Sci U S A 107:10578–10583. CrossRefPubMedPubMedCentralGoogle Scholar
  65. Xu GH, Wang XF, Huang C, Xu DY, Li D, Tian JG, Chen QY, Wang CL, Liang YM, Wu YY, Yang XH, Tian F (2017) Complex genetic architecture underlies maize tassel domestication. New Phytol 214:852–864. CrossRefPubMedPubMedCentralGoogle Scholar
  66. Xu J, Li ZG, Yang HR, Yang XH, Chen CX, Li H (2016) Genetic diversity and molecular evolution of a violaxanthin de-epoxidase gene in maize. Front Genet 7(131).
  67. Xu ST, Zhang DL, Cai Y, Zhou Y, Shah T, Ali F, Li Q, Li ZG, Wang WD, Li JS, Yang XH, Yan JB (2012) Dissecting tocopherols content in maize (Zea mays L.), using two segregating populations and high-density single nucleotide polymorphism markers. BMC Plant Biol 12:201. CrossRefGoogle Scholar
  68. Yan JB, Kandianis CB, Harjes CE, Bai L, Kim EH, Yang XH, Skinner DJ, Fu ZY, Mitchell S, Li Q, Fernandez MGS, Zaharieva M, Babu R, Fu Y, Palacios N, Li JS, DellaPenna D, Brutnell T, Buckler ES, Warburton ML, Rocheford T (2010) Rare genetic variation at Zea mays crtRB1 increases β-carotene in maize grain. Nat Genet 42:322–327. CrossRefPubMedGoogle Scholar
  69. Yang XH, Gao SB, Xu ST, Zhang ZX, Prasanna BM, Li L, Li JS, Yan JB (2011) Characterization of a global germplasm collection and its potential utilization for analysis of complex quantitative traits in maize. Mol Breed 28:511–526. CrossRefGoogle Scholar
  70. Yoshikazu T, Akemi O (2008) Seeing is believing: engineering anthocyanin and carotenoid biosynthetic pathways. Curr Opin Biotechnol 19:190–197. CrossRefGoogle Scholar
  71. Zeng DL, Tian ZX, Rao YC, Dong GJ, Yang YL, Huang LC, Leng YJ, Xu J, Sun C, Zhang GH, Hu J, Zhu L, Gao ZY, Hu XM, Guo LB, Xiong GS, Wang YH, Li JY, Qian Q (2017) Rational design of high-yield and superior-quality rice. Nat Plants 3:17031. CrossRefPubMedGoogle Scholar
  72. Zhou Y, Han YJ, Li ZG, Fu Y, Fu ZY, Xu ST, Li JS, Yan JB, Yang XH (2012) ZmcrtRB3 encodes a carotenoid hydroxylase that affects the accumulation of α-carotene in maize kernel. J Integr Plant Biol 54:260–269. CrossRefPubMedGoogle Scholar
  73. Zhou Y, Fu ZY, Li Q, Xu ST, Chander S, Yang XH, Li JS, Yan JB (2009) Comparative analysis of carotenoid and tocopherol compositions in high-oil and normal maize (Zea mays L.) inbreds. Acta Agron Sin 35:2073–2084. CrossRefGoogle Scholar
  74. Zhu CF, Naqvi S, Breitenbach J, Sandmann G, Christou P, Capell T (2008) Combinational genetic transformation generates a library of metabolic phenotypes for the carotenoid pathway in maize. Proc Natl Acad Sci U S A 105:18232–18237. CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  1. 1.State Key Laboratory of Plant Physiology and Biochemistry, National Maize Improvement Center of China, MOA Key Laboratory of Maize Biology, Beijing Key Laboratory of Crop Genetic ImprovementChina Agricultural UniversityBeijingChina
  2. 2.Key Laboratory of Biology and Genetic Improvement of Maize in Arid Area of Northwest Region, Ministry of AgricultureCollege of Agronomy Northwest A&F UniversityYanglingChina

Personalised recommendations